Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Thursday 15 November 2018 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks]. Bachillerato Internacional

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Consider the binary operation * defined on the set of rational numbers, \mathbb{Q} by $a * b=a+b+a b$.
(a) Show that the operation * is
(i) commutative;
(ii) associative.
(b) Solve the equation $a * b=-1$.

Let $S=\{x \in \mathbb{Q} \mid x \neq-1\}$.
(c) Show that $\{S, *\}$ is an Abelian group.
2. [Maximum mark: 8]

Consider two subsets X and Y of a universal set U.
(a) Use De Morgan's laws to prove that $\left[\left(X^{\prime} \cup Y^{\prime}\right)^{\prime} \cap Y^{\prime}\right]^{\prime}=U$.

Let $X=\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m=n^{2}\right\}$ and $Y=\{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid 0 \leq m+n \leq 6\}$.
(b) List all elements of $X \cap Y$.
3. [Maximum mark: 10]

A relation R is defined on $\mathbb{R} \times \mathbb{R}$ by $(a, b) R(c, d) \Leftrightarrow 3(a-c)=2(b-d)$.
(a) Show that R is an equivalence relation.
(b) Find the equivalence class containing $(1,2)$ and describe it geometrically.
4. [Maximum mark: 9]

Consider the functions $f, g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ defined by

$$
f((x, y))=(x+y, x-y) \text { and } g((x, y))=(x y, x+y) .
$$

(a) Find
(i) $(f \circ g)((x, y))$;
(ii) $(g \circ f)((x, y))$.
(b) State with a reason whether or not f and g commute.
(c) Find the inverse of f.
5. [Maximum mark: 10]

Consider a finite group $\{G, *\}$. Let H be a subgroup of G of order m such that $G \backslash H \neq \varnothing$. Let a be a fixed element of $G \backslash H$. Consider the set $A=\{a * h \mid h \in H\}$.
(a) Show that $A \cap H=\varnothing$.

Consider the function $f: H \rightarrow A$ defined by $f(h)=a * h$.
(b) Show that f is a bijection.
(c) Find the number of elements in the set $A \cup H$.

