

Mathematics Higher level Paper 3 – sets, relations and groups

Thursday 15 November 2018 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Consider the binary operation * defined on the set of rational numbers, \mathbb{Q} by a*b = a + b + ab.

- (a) Show that the operation * is
 - (i) commutative;

(b) Solve the equation a*b = -1. [3]

Let $S = \{x \in \mathbb{Q} \mid x \neq -1\}$.

(c) Show that
$$\{S, *\}$$
 is an Abelian group. [5]

2. [Maximum mark: 8]

Consider two subsets X and Y of a universal set U.

(a) Use De Morgan's laws to prove that
$$\left[\left(X' \cup Y'\right)' \cap Y'\right]' = U$$
. [4]

Let $X = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m = n^2\}$ and $Y = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid 0 \le m + n \le 6\}$.

(b) List all elements of
$$X \cap Y$$
. [4]

3. [Maximum mark: 10]

A relation *R* is defined on $\mathbb{R} \times \mathbb{R}$ by $(a, b)R(c, d) \Leftrightarrow 3(a - c) = 2(b - d)$.

(a) Show that R is an equivalence relation. [8]

(b) Find the equivalence class containing (1, 2) and describe it geometrically. [2]

7. IIVIAAIIIIUIII IIIAIN. J	4.	Maximum	mark:	9
------------------------------------	----	---------	-------	---

Consider the functions $f,g:\mathbb{R}\times\mathbb{R}\to\mathbb{R}\times\mathbb{R}$ defined by

$$f((x, y)) = (x + y, x - y)$$
 and $g((x, y)) = (xy, x + y)$.

- (a) Find
 - (i) $(f \circ g)((x,y));$

(ii)
$$(g \circ f)((x,y))$$
. [5]

- (b) State with a reason whether or not f and g commute. [1]
- (c) Find the inverse of f. [3]

5. [Maximum mark: 10]

Consider a finite group $\{G,*\}$. Let H be a subgroup of G of order m such that $G \setminus H \neq \emptyset$. Let a be a fixed element of $G \setminus H$. Consider the set $A = \{a*h \mid h \in H\}$.

(a) Show that
$$A \cap H = \emptyset$$
. [3]

Consider the function $f: H \to A$ defined by f(h) = a*h.

- (b) Show that f is a bijection. [4]
- (c) Find the number of elements in the set $A \cup H$. [3]