Mathematics
 Higher level
 Paper 3 - calculus

Thursday 15 November 2018 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks]. Bachillerato Internaciona

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]
(a) Use the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{2 n+1}{3 n^{2}}$ converges or diverges.
(b) Show that the series $\sum_{n=1}^{\infty} \frac{n^{2}}{n!}(x-1)^{n}$ converges for all $x \in \mathbb{R}$.
2. [Maximum mark: 8]
(a) Use L'Hôpital's rule to determine the value of

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(\frac{\mathrm{e}^{-3 x^{2}}+3 \cos (2 x)-4}{3 x^{2}}\right) \tag{5}
\end{equation*}
$$

(b) Hence find $\lim _{x \rightarrow 0}\left(\frac{\int_{0}^{x}\left(\mathrm{e}^{-3 t^{2}}+3 \cos (2 t)-4\right) \mathrm{d} t}{\int_{0}^{x} 3 t^{2} \mathrm{~d} t}\right)$.
3. [Maximum mark: 14]

Consider the differential equation

$$
(x+2)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=(x+1) y, \text { where } x \neq-2
$$

with initial condition $y=2$ when $x=1$.
(a) Show that $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{3 x+7}{(x+2)^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$.

Taylor polynomials, about $x=1$, are used to approximate $y(x)$.
(b) Find the Taylor polynomial of
(i) degree 2;
(ii) degree 3 .
(c) Find the difference between the approximated values of y (1.05) that is obtained using the two answers to part (b).
4. [Maximum mark: 18]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+\frac{y}{x}$, where $x \neq 0$.
(a) Given that $y(1)=1$, use Euler's method with step length $h=0.25$ to find an approximation for $y(2)$. Give your answer to two significant figures.
(b) Solve the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+\frac{y}{x}$ for $y(1)=1$.
(c) Find the percentage error when $y(2)$ is approximated by the final rounded value found in part (a). Give your answer to two significant figures.

Consider the family of curves which satisfy the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+\frac{y}{x}$, where $x \neq 0$.
(d) (i) Find the equation of the isocline corresponding to $\frac{\mathrm{d} y}{\mathrm{~d} x}=k$, where $k \neq 0, k \in \mathbb{R}$.
(ii) Show that such an isocline can never be a normal to any of the family of curves that satisfy the differential equation.

