Mathematics
 Higher level
 Paper 3 - statistics and probability

Thursday 16 November 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 7]

A continuous random variable T has a probability density function defined by

$$
f(t)=\left\{\begin{array}{cc}
\frac{t\left(4-t^{2}\right)}{4}, & 0 \leq t \leq 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Find the cumulative distribution function $F(t)$, for $0 \leq t \leq 2$.
(b) (i) Sketch the graph of $F(t)$ for $0 \leq t \leq 2$, clearly indicating the coordinates of the endpoints.
(ii) Given that $\mathrm{P}(T<a)=0.75$, find the value of a.
2. [Maximum mark: 8]

Anne is a farmer who grows and sells pumpkins. Interested in the weights of pumpkins produced, she records the weights of eight pumpkins and obtains the following results in kilograms.

$$
\begin{array}{llllllll}
7.7 & 7.5 & 8.4 & 8.8 & 7.3 & 9.0 & 7.8 & 7.6
\end{array}
$$

Assume that these weights form a random sample from a $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution.
(a) Determine unbiased estimates for μ and σ^{2}.
(b) Anne claims that the mean pumpkin weight is 7.5 kilograms. In order to test this claim, she sets up the null hypothesis $\mathrm{H}_{0}: \mu=7.5$.
(i) Use a two-tailed test to determine the p-value for the above results.
(ii) Interpret your p-value at the 5% level of significance, justifying your conclusion.
3. [Maximum mark: 12]

A random variable X is distributed with mean μ and variance σ^{2}. Two independent random samples of sizes n_{1} and n_{2} are taken from the distribution of X. The sample means are \bar{X}_{1} and \bar{X}_{2} respectively.
(a) Show that $U=a \bar{X}_{1}+(1-a) \bar{X}_{2}, a \in \mathbb{R}$, is an unbiased estimator of μ.
(b) (i) Show that $\operatorname{Var}(U)=a^{2} \frac{\sigma^{2}}{n_{1}}+(1-a)^{2} \frac{\sigma^{2}}{n_{2}}$.
(ii) Find, in terms of n_{1} and n_{2}, an expression for a which gives the most efficient estimator of this form.
(iii) Hence find an expression for the most efficient estimator and interpret the result.
4. [Maximum mark: 8]

The random variables U, V follow a bivariate normal distribution with product moment correlation coefficient ρ.
(a) State suitable hypotheses to investigate whether or not U, V are independent.

A random sample of 12 observations on U, V is obtained to determine whether there is a correlation between U and V. The sample product moment correlation coefficient is denoted by r. A test to determine whether or not U, V are independent is carried out at the 1% level of significance.
(b) Find the least value of $|r|$ for which the test concludes that $\rho \neq 0$.
5. [Maximum mark: 15]

The random variable X follows a Poisson distribution with mean λ. The probability generating function of X is given by $G_{X}(t)=\mathrm{e}^{\lambda(t-1)}$.
(a) (i) Find expressions for $G_{X}^{\prime}(t)$ and $G_{X}^{\prime \prime}(t)$.
(ii) Hence show that $\operatorname{Var}(X)=\lambda$.

The random variable Y, independent of X, follows a Poisson distribution with mean μ.
(b) By considering the probability generating function, $G_{X+Y}(t)$, of $X+Y$, show that $X+Y$ follows a Poisson distribution with mean $\lambda+\mu$.
(c) (i) Show that $\mathrm{P}(X=x \mid X+Y=n)=\binom{n}{x}\left(\frac{\lambda}{\lambda+\mu}\right)^{x}\left(1-\frac{\lambda}{\lambda+\mu}\right)^{n-x}$, where n, x are non-negative integers and $n \geq x$.
(ii) Identify the probability distribution given in part (c)(i) and state its parameters.

