

Mathematics Higher level Paper 3 – sets, relations and groups

Thursday 16 November 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Y

[1]

[6]

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 11]

Consider the group $\{G, \times_{18}\}$ defined on the set $\{1, 5, 7, 11, 13, 17\}$ where \times_{18} denotes multiplication modulo 18. The group $\{G, \times_{18}\}$ is shown in the following Cayley table.

× ₁₈	1	5	7	11	13	17
1	1	5	7	11	13	17
5	5	7	17	1	11	13
7	7	17	13	5	1	11
11	11	1	5	13	17	7
13	13	11	1	17	7	5
17	17	13	11	7	5	1

- (a) (i) Find the order of elements 5, 7 and 17 in $\{G, \times_{18}\}$.
 - (ii) State whether or not $\{G, \times_{18}\}$ is cyclic, justifying your answer. [6]

The subgroup of $\{G, \times_{18}\}$ of order two is denoted by $\{K, \times_{18}\}$.

- (b) Write down the elements in set K.
- (c) Find the left cosets of K in $\{G, \times_{18}\}$. [4]
- 2. [Maximum mark: 8]
 - A, B and C are three subsets of a universal set.
 - (a) Represent each of the following sets on a Venn diagram,
 - (i) $A \Delta B$, the symmetric difference of the sets A and B;
 - (ii) $A \cap (B \cup C)$. [2]

Consider the sets $P = \{1, 2, 3\}, Q = \{2, 3, 4\}$ and $R = \{1, 3, 5\}$.

- (b) (i) For sets P, Q and R, verify that $P \cup (Q\Delta R) \neq (P \cup Q)\Delta(P \cup R)$.
 - (ii) In the context of the distributive law, describe what the result in part (b)(i) illustrates.

-2-

[5]

[2]

3. [Maximum mark: 9]

The relation *R* is defined on $\mathbb{R} \times \mathbb{R}$ such that $(x_1, y_1)R(x_2, y_2)$ if and only if $x_1 y_1 = x_2 y_2$.

- (a) Show that R is an equivalence relation.
- (b) Determine the equivalence class of *R* containing the element (1, 2) and illustrate this graphically. [4]
- **4.** [Maximum mark: 14]

The set *S* is defined as the set of real numbers greater than 1. The binary operation * is defined on *S* by x * y = (x - 1)(y - 1) + 1 for all $x, y \in S$.

- (a) Show that $x * y \in S$ for all $x, y \in S$. [2]
- (b) Show that the operation * on the set S is
 - (i) commutative;
 - (ii) associative. [7]
- (c) Show that 2 is the identity element.

Let $a \in S$.

(d) Show that each element $a \in S$ has an inverse. [3]

5. [Maximum mark: 8]

Let $f: G \to H$ be a homomorphism between groups $\{G, *\}$ and $\{H, \circ\}$ with identities e_G and e_H respectively.

(a)	Prove that $f(e_G) = e_H$.	[2]
(b)	Prove that $\text{Ker}(f)$ is a subgroup of $\{G, *\}$.	[6]