Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Thursday 16 November 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 11]

Consider the group $\left\{G, \times_{18}\right\}$ defined on the set $\{1,5,7,11,13,17\}$ where \times_{18} denotes multiplication modulo 18. The group $\left\{G, \times_{18}\right\}$ is shown in the following Cayley table.

\times_{18}	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 7}$
$\mathbf{1}$	1	5	7	11	13	17
$\mathbf{5}$	5	7	17	1	11	13
$\mathbf{7}$	7	17	13	5	1	11
$\mathbf{1 1}$	11	1	5	13	17	7
$\mathbf{1 3}$	13	11	1	17	7	5
$\mathbf{1 7}$	17	13	11	7	5	1

(a) (i) Find the order of elements 5, 7 and 17 in $\left\{G, \times_{18}\right\}$.
(ii) State whether or not $\left\{G, \times_{18}\right\}$ is cyclic, justifying your answer.

The subgroup of $\left\{G, \times_{18}\right\}$ of order two is denoted by $\left\{K, \times_{18}\right\}$.
(b) Write down the elements in set K.
(c) Find the left cosets of K in $\left\{G, \times_{18}\right\}$.
2. [Maximum mark: 8]
A, B and C are three subsets of a universal set.
(a) Represent each of the following sets on a Venn diagram,
(i) $A \Delta B$, the symmetric difference of the sets A and B;
(ii) $A \cap(B \cup C)$.

Consider the sets $P=\{1,2,3\}, Q=\{2,3,4\}$ and $R=\{1,3,5\}$.
(b) (i) For sets P, Q and R, verify that $P \cup(Q \Delta R) \neq(P \cup Q) \Delta(P \cup R)$.
(ii) In the context of the distributive law, describe what the result in part (b)(i) illustrates.
3. [Maximum mark: 9]

The relation R is defined on $\mathbb{R} \times \mathbb{R}$ such that $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ if and only if $x_{1} y_{1}=x_{2} y_{2}$.
(a) Show that R is an equivalence relation.
(b) Determine the equivalence class of R containing the element $(1,2)$ and illustrate this graphically.
4. [Maximum mark: 14]

The set S is defined as the set of real numbers greater than 1 .
The binary operation $*$ is defined on S by $x * y=(x-1)(y-1)+1$ for all $x, y \in S$.
(a) Show that $x * y \in S$ for all $x, y \in S$.
(b) Show that the operation * on the set S is
(i) commutative;
(ii) associative.
(c) Show that 2 is the identity element.

Let $a \in S$.
(d) Show that each element $a \in S$ has an inverse.
5. [Maximum mark: 8]

Let $f: G \rightarrow H$ be a homomorphism between groups $\{G, *\}$ and $\{H, \circ\}$ with identities e_{G} and e_{H} respectively.
(a) Prove that $f\left(e_{G}\right)=e_{H}$.
(b) Prove that $\operatorname{Ker}(f)$ is a subgroup of $\{G, *\}$.

