Mathematics
 Higher level
 Paper 3 - discrete mathematics

Thursday 16 November 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 11]

Mathilde delivers books to five libraries, A, B, C, D and E. She starts her deliveries at library D and travels to each of the other libraries once, before returning to library D. Mathilde wishes to keep her travelling distance to a minimum.

The weighted graph H, representing the distances, measured in kilometres, between the five libraries, has the following table.

	A	B	C	D	E
A	-	18	19	16	21
B	18	-	15	22	17
C	19	15	-	20	17
D	16	22	20	-	19
E	21	17	17	19	-

(a) Draw the weighted graph H.
(b) Starting at library D use the nearest-neighbour algorithm, to find an upper bound for Mathilde's minimum travelling distance. Indicate clearly the order in which the edges are selected.
(c) By first removing library C, use the deleted vertex algorithm, to find a lower bound for Mathilde's minimum travelling distance.
2. [Maximum mark: 10]

Consider the recurrence relation

$$
u_{n}=5 u_{n-1}-6 u_{n-2}, u_{0}=0 \text { and } u_{1}=1 .
$$

(a) Find an expression for u_{n} in terms of n.
(b) For every prime number $p>3$, show that $p \mid u_{p-1}$.
3. [Maximum mark: 11]
(a) (i) Draw the complete bipartite graph $\kappa_{3,3}$.
(ii) Prove that $\kappa_{3,3}$ is not planar.
(b) A connected graph G has v vertices. Prove, using Euler's relation, that a spanning tree for G has $v-1$ edges.

Consider κ_{n}, a complete graph with n vertices, $n \geq 2$. Let T be a fixed spanning tree of κ_{n}.
(c) If an edge E is chosen at random from the edges of κ_{n}, show that the probability that E belongs to T is equal to $\frac{2}{n}$.
4. [Maximum mark: 9]

Consider the system of linear congruences

$$
\begin{aligned}
& x \equiv 2(\bmod 5) \\
& x \equiv 5(\bmod 8) \\
& x \equiv 1(\bmod 3) .
\end{aligned}
$$

(a) With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a unique solution modulo 120 to this system of linear congruences.
(b) Hence or otherwise, find the general solution to the above system of linear congruences.
5. [Maximum mark: 9]
(a) Convert the decimal number 1071 to base 12 .
(b) Write the decimal number 1071 as a product of its prime factors.

The decimal number 1071 is equal to $a 060$ in base b, where $a>0$.
(c) (i) Using your answers to part (a) and (b), prove that there is only one possible value for b and state this value.
(ii) Hence state the value of a.

