Mathematics
 Higher level
 Paper 3 - calculus

Thursday 16 November 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 5]

The function f is defined by

$$
f(x)= \begin{cases}x^{2}-2, & x<1 \\ a x+b, & x \geq 1\end{cases}
$$

where a and b are real constants.
Given that both f and its derivative are continuous at $x=1$, find the value of a and the value of b.
2. [Maximum mark: 10]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x}{x^{2}+1} y=x$ where $y=1$ when $x=0$.
(a) Show that $\sqrt{x^{2}+1}$ is an integrating factor for this differential equation.
(b) Solve the differential equation giving your answer in the form $y=f(x)$.
3. [Maximum mark: 12]
(a) Use the limit comparison test to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2}$ is convergent.

Let $S=\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n^{2}+2}$.
(b) Find the interval of convergence for S.
4. [Maximum mark: 10]

The mean value theorem states that if f is a continuous function on $[a, b]$ and differentiable on $] a, b\left[\right.$ then $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ for some $\left.c \in\right] a, b[$.

The function g, defined by $g(x)=x \cos (\sqrt{x})$, satisfies the conditions of the mean value theorem on the interval $[0,5 \pi]$.
(a) For $a=0$ and $b=5 \pi$, use the mean value theorem to find all possible values of c for the function g.
(b) Sketch the graph of $y=g(x)$ on the interval $[0,5 \pi]$ and hence illustrate the mean value theorem for the function g.
5. [Maximum mark: 13]

Consider the function $f(x)=\sin (p \arcsin x),-1<x<1$ and $p \in \mathbb{R}$.
(a) Show that $f^{\prime}(0)=p$.

The function f and its derivatives satisfy

$$
\left(1-x^{2}\right) f^{(n+2)}(x)-(2 n+1) x f^{(n+1)}(x)+\left(p^{2}-n^{2}\right) f^{(n)}(x)=0, n \in \mathbb{N}
$$

where $f^{(n)}(x)$ denotes the nth derivative of $f(x)$ and $f^{(0)}(x)$ is $f(x)$.
(b) Show that $f^{(n+2)}(0)=\left(n^{2}-p^{2}\right) f^{(n)}(0)$.
(c) For $p \in \mathbb{R} \backslash\{ \pm 1, \pm 3\}$, show that the Maclaurin series for $f(x)$, up to and including the x^{5} term, is

$$
\begin{equation*}
p x+\frac{p\left(1-p^{2}\right)}{3!} x^{3}+\frac{p\left(9-p^{2}\right)\left(1-p^{2}\right)}{5!} x^{5} . \tag{4}
\end{equation*}
$$

(d) Hence or otherwise, find $\lim _{x \rightarrow 0} \frac{\sin (p \arcsin x)}{x}$.
(e) If p is an odd integer, prove that the Maclaurin series for $f(x)$ is a polynomial of degree p.

