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yy Do not open this examination paper until instructed to do so.
yy Answer all the questions.
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correct to three significant figures.
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yy A clean copy of the mathematics HL and further mathematics HL formula booklet is 
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
graphs are used to find a solution, you should sketch these as part of your answer.  Where an answer 
is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  5]

	 The function  f  is defined by
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where  a  and  b  are real constants.

Given that both  f  and its derivative are continuous at  x = 1 , find the value of  a  and the 
value of  b .

2.	 [Maximum mark:  10]

	 Consider the differential equation 
d

d

y
x

x
x

y x+
+

=
2 1

 where  y = 1  when  x = 0 .

	 (a)	 Show that x2 1+  is an integrating factor for this differential equation. [4]

	 (b)	 Solve the differential equation giving your answer in the form  y = f (x) . [6]

3.	 [Maximum mark:  12]

	 (a)	 Use the limit comparison test to show that the series 2
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	 (b)	 Find the interval of convergence for  S . [9]
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4.	 [Maximum mark:  10]

	 The mean value theorem states that if  f  is a continuous function on  [a , b]  and differentiable 

on  ]a , b[  then ′ =
−
−
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 for some  c ∈ ]a , b[ .

The function  g , defined by g x x x( ) cos= ( ) , satisfies the conditions of the mean value 

theorem on the interval  [0 , 5π] .

	 (a)	 For  a = 0  and  b = 5π , use the mean value theorem to find all possible values of  c  for 
the function  g . [6]

	 (b)	 Sketch the graph of  y = g(x)  on the interval  [0 , 5π]  and hence illustrate the  
mean value theorem for the function  g . [4]

5.	 [Maximum mark:  13]

	 Consider the function  f (x) = sin(p arcsin x) , -1 < x < 1  and  p ∈  .

	 (a)	 Show that  f '(0) = p . [2]

	 The function  f  and its derivatives satisfy

(1 - x2) f (n + 2)(x) - (2n + 1) xf (n + 1)(x) + (p2 - n2) f (n)(x) = 0 , n ∈ 

where  f (n)(x)  denotes the  n th derivative of  f (x)  and  f (0)(x)  is  f (x) .

	 (b)	 Show that  f (n + 2)(0) = (n2 - p2) f (n)(0) . [1]

	 (c)	 For  p ∈  \ {±1 , ±3} , show that the Maclaurin series for  f (x) , up to and including 
the  x5  term, is 
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	 (d)	 Hence or otherwise, find lim
sin( arcsin )

x

p x
x→0

. [2]

	 (e)	 If  p  is an odd integer, prove that the Maclaurin series for  f (x)  is a polynomial of 
degree  p . [4]
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