

OXFORD
 UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trademark of Oxford University Press in the UK and in certain other countries.

Published in Australia by
Oxford University Press
Level 8, 737 Bourke Street, Docklands, Victoria 3008, Australia.
© Oxford University Press 2019
The moral rights of the author have been asserted
First published 2019
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence, or under terms agreed with the reprographics rights organisation. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form and you must impose this same condition on any acquirer.

ISBN 9780190312251
Edited by Philip Bryan
Illustrated by Daniel Rieley
Typeset by Newgen KnowledgeWorks Pvt. Ltd., Chennai, India
Proofread by Vanessa Lanaway, Red Dot Scribble
Printed in China by Leo Paper Products Ltd

Acknowledgements

Cover: istock/Snowshill. Internal: Fir0002/Flagstaffotos: meerkat first appearing on page 4; other meerkats: Shutterstock.

To the teacher

Oxford Mathematics PYP provides students with guided and independent work to support mathematical skills and understandings, as well as opportunities for problem-solving in real-world contexts. Teachers will find the supporting materials clear, comprehensive and easy to use. While the series offers complete coverage of the PYP mathematics scope and sequence, teachers can also use the topics that fit well with other areas of work to support student learning across the PYP curriculum.

Student Books

Each topic features:

- Guided practice - a worked example of the concept, followed by the opportunity for students to practise, supported by careful scaffolding
- Independent practice - further opportunities for students to consolidate their understanding of the concept in different ways, with a decreasing amount of scaffolding
- Extended practice - the opportunity for students to apply their learning and extend their understanding in new contexts.

Differentiation

Differentiation is key to ensuring that every student can access the curriculum at their point of need. In addition to the gradual release approach of the Student Books, the Teacher Books help teachers to choose appropriate pathways for students, and provide activities for students who require extra support or extension.

Oxford Mathematics

Primary Years Programme

Contents

NUMBER, PATTERN AND FUNCTION

Unit 1 Number and place value

l. Place value 2
2. Square numbers and triangular numbers 6
3. Prime and composite numbers 10
4. Mental strategies for addition and
subtraction
5. Written strategies for addition 18
6. Written strategies for subtraction 22
7. Mental strategies for multiplication
and division
8. Written strategies for multiplication 30
9. Written strategies for division 34
10. Integers 38
11. Exponents and square roots 42

Unit 2 Fractions and decimals

1. Fractions 46
2. Adding and subtracting fractions 50
3. Decimal fractions 54
4. Addition and subtraction of decimals 58
5. Multiplication and division of decimals 62
6. Decimals and powers of $10 \quad 66$
7. Percentage, fractions and decimals 70

Unit 3 Ratios

1. Ratios 74

Unit 4 Patterns and algebra

1. Geometric and number patterns 78
2. Order of operations 82

OXFORD
UNIVERSITY PRESS
AUSTRALIA \& NEW ZEALAND

MEASUREMENT, SHAPE AND SPACE

Unit 5 Using units of measurement

1. Length 86
2. Area 90
3. Volume and capacity 94
4. Mass 98
5. Timetables and timelines 102

Unit 6 Shape

1. 2 D shapes 106
2. 3D shapes 110

Unit 7 Geometric reasoning

1. Angles 114

Unit 8 Location and transformation

1. Transformations 118
2. The Cartesian coordinate system 122

DATA HANDLING

Unit 9 Data representation and interpretation

1. Collecting, representing and
interpreting data
2. Data in the media 130
3. Range, mode, median and mean 134

Unit 10 Chance

1. Describing probabilities 138
2. Conducting chance experiments and
analysing outcomes

Glossary 146
Answers 156

UNIT 1: TOPIC 1
 Place value

Working with very large numbers

Large numbers have a gap between each set of three digits.
837452691 is easier to read if we write 837452691 . It also makes it easier to say the number:
eight hundred and thirty-seven million, four hundred and fifty-two thousand, six hundred and ninety-one

Guided practice

1 Look at this number: 5367918
Show the value of each digit on the place-value grid.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Millions } & \begin{array}{l}\text { Hundred } \\ \text { thousands }\end{array} & \begin{array}{l}\text { Ten } \\ \text { thousands }\end{array} & \text { Thousands } & \text { Hundreds } & \text { Tens } & \text { Ones } & \begin{array}{l}\text { Write the } \\ \text { number } \\ \text { using }\end{array} \\ \text { gaps if }\end{array}\right\}$

2 If we write nine hundred and five thousand, four hundred and seventy-six in digits, we use a zero to show there are no tens of thousands:
905476
Write as digits:

Rememberto use a zero as a space-filler.
a fifty-one thousand, six hundred and four
b two hundred thousand and twenty-six
c twelve thousand and ten

Independent practice

1 What is the value of the red digit?
a 463290 \qquad b 6329477
c 2406219 \qquad d $\quad 51385067$
e 80487003
f 351000819
\qquad
\qquad
\qquad

2 Write the numbers from question 1 in words.
a \qquad
b \qquad
c \qquad
d \qquad
e \qquad
f \qquad

3 Write these numbers as digits.
a eighty million, four hundred and eighty-seven thousand
\qquad
c one hundred and fourteen million, seven hundred and sixty thousand, two hundred and nine
b ten million, three hundred and sixty-two thousand and fifty-nine
\qquad
d one billion, four hundred million, five hundred and ninety-three thousand and one

4 Expand these numbers. The first one has been done for you.
a $374596: \quad 300000+70000+4000+500+90+6$
b 214 867: $200000+$
c 2567 321:
d 5673207 :
e $\quad 57319240$:
f 407508004 : \qquad

5 Look at these digit cards.

a What is the largest number that can be made using all the cards?
\qquad
c What is the largest number that can be made if the " 7 " is seven ones?
b What is the smallest number that can be made if the digit " 5 " is in the millions place?
d What is the smallest number that can be made if the " 1 " is in the tens of thousands place?
\qquad

6 Write the number shown on each spike abacus as digits and in words.

digits: \qquad
words: \qquad
\qquad

Extended practice

1 To change the calculator screen to show the second number, I would press:

a	24550	$=$	24550
b	37154	=	77154
c	739255	=	719255
d	999999	=	1000000

2 Sometimes large numbers are abbreviated. $\$ 1 \mathrm{~K}$ means $\$ 1000$. $\$ 1.3 \mathrm{M}$ can be used for $\$ 1300000$. Write the new price of these houses using digits in full.
a $\quad \$ 345 \mathrm{~K}$ reduced by $\$ 5000$
b $\quad \$ 725 \mathrm{~K}$ reduced by $\$ 20000$
c $\quad \$ 875 \mathrm{~K}$ reduced by $\$ 50 \mathrm{~K}$
d $\$ 1.5 \mathrm{M}$ reduced by $\$ 250 \mathrm{~K}$
\qquad
\qquad
\qquad
\qquad

3 Imagine you have to choose just one digit in each of these numbers. Write:

- the digit you would choose
- the value of the digit
- the reason for your choice.
a A share of \$574 612 . \qquad
\qquad
b Writing out your times tables 574612 times. \qquad
\qquad
c Eating 574612 of your favourite snack food in 10 minutes. \qquad
\qquad

UNIT 1: TOPIC 2

Square numbers and triangular numbers

Numbers can be arranged in patterns

4 is a square

3 is a triangular number.

Guided practice

1) These are the first six square numbers. Fill in the gaps.

2 These are the first four triangular numbers. Fill in the gaps.
1

3

\square

$1+2+3=$

\square

Independent practice

1 Complete the grid to show the first ten square numbers. Write the information as you did on page 10.

2 a What is the next number in the square number pattern?
b How does the digit in the ones column change in the square number pattern?
c Circle one answer. The 100th square number is:
100100010000

3 Complete the pattern and information to show the first 10 triangular numbers.

4 a What is the 11th triangular number?
b Apart from 1, which triangular number is also a square number? \square
c How does the triangular number pattern grow? (Hint: Think about odd and even numbers.) \qquad

Extended practice

1 Continue this table.

Square number	Multiplication fact	Addition fact
$1^{2}=1$	$1 \times 1=1$	1
$2^{2}=4$	$2 \times 2=4$	$1+3=4$
$3^{2}=9$	$3 \times 3=9$	$1+3+5=9$
$4^{2}=$		
$5^{2}=$		
$6^{2}=$		
$7^{2}=$		
$8^{2}=$		
$9^{2}=$		
$10^{2}=$		

2 a What do you notice about the way the addition facts grow in question 1?
\qquad
b Write the facts for the 11th square number. \qquad
\qquad
c How many would you add to the 11th square number to find the 12th square number? \qquad

3 This pattern shows the first few pentagonal numbers.
-

a One of the numbers in this list is not a pentagonal number. Which number is it?
$5,12,15,22,35$
b Write the first 5 pentagonal numbers.
c Write an explanation that would help a younger student to understand the connection between each pentagonal number and the one that follows it.
d On a separate piece of paper, draw a diagram of the 6th pentagonal number.

UNIT 1: TOPIC 3

Prime and composite numbers

How do we recognise a prime number?

We say a number is prime if it has just two factors: 1 and itself. The number 2 is the smallest prime number because it can only be divided by 1 and 2 . Numbers that have more than two factors are called composite numbers.

A prime number
has just 2 factors.
A composite number has more than 2 factors.

Guided practice

1 Complete this chart.

Number	Factors (numbers it can be divided by)	How many factors?	Prime or composite?	
			Prime	Composite
1	1	1	neither	
2	1 and 2	2	\checkmark	
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

2 a List the prime numbers between 2 and 20.
b Comment on the number of even prime numbers.

Independent practice

1 Follow these instructions to complete the grid. The grid has been started for you.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

a $\quad 1$ is neither prime nor composite. Draw a star around it.
b $\quad 2$ is a prime number. Circle it.
c Lightly shade all the multiples of 2. They are composite numbers.
d Put a circle around the next prime number: 3
e Lightly shade all the multiples of 3 . They are composite numbers.
f Put a circle around the next prime number: 5
g Lightly shade all the multiples of 5. They are composite numbers.
h Find the next prime number. Circle it.
i Lightly shade all its multiples.
j Repeat Step h and Step i until you get to the end of the grid.

2 a The highest prime number on the grid is: \square
b True or false? All the prime numbers are odd.
c True or false? More of the composite numbers are even than odd. \qquad

3 All composite numbers are made by multiplying prime numbers. 6 is a composite number. It can be made by multiplying 2 prime numbers: 2×3. We can show it in a factor tree:

The prime factors of 6 are 2 and 3 . So $6=2 \times 3$

Prime factors are two or more prime numbers
that are multiplied together to make a composite number.

15

c The prime factors of 15 are

f The prime factors of 39 are
\qquad
34
\times
The prime factors of 34 are

4 Draw factor trees for:
a $\quad 14$

b 55

C 49
\square

Extended practice

The prime factors of 8 are 2,2 and 2 . To show the prime factors of 8 , we can write $2 \times 2 \times 2$. We can also write 2^{3}.

2×4

2×2
$8=2 \times 2 \times 2$

1 Fill in the gaps.

a $\quad 20=2 \times 2 \times$
b $18=$ \qquad \times \qquad \times $18=$ \qquad
\qquad $20=2 \quad \times$ \qquad

c $28=$ \qquad \times \qquad \times \qquad d $36=$ \qquad \times \qquad \times \qquad \times \qquad $28=$ \qquad \square_{x} \qquad

2 Draw factor trees to show the prime factors.
a 27

b 30

c $\quad 24$
\square

UNIT 1: TOPIC 4

Mental strategies for addition and subtraction

Looking for short cuts

Round numbers are easy to work with. For example, 287-98=?
We could say, 287-100=187.
We took away 2 too many, so we add 2 back to the answer. So, $287-98=189$.

Guided practice

1 Use rounding for these subtractions. Fill in the gaps.

	Problem	Using rounding it becomes	Now I need to	Answer
a	$317+199$	$317+200=517$	take away 1	516
b	$275-101$	$275-100=175$	take away another 1	
c	$527+302$	$527+r$	add another	
d	$377-98$	$377-\quad$		
e	$249+249$			
f	$938-206$			
g	$1464+998$			

Splitting numbers can make addition easier.
For example, $160+830=$?
Split (expand) the numbers: $100+60+800+30$

Looking for sensible short cuts makes sense to me!

Join the partners: $100+800+60+30=900+90=990$

2 Split the numbers. Fill in the gaps.

	Problem	Expand the numbers	Join the partners	Answer
a	$370+520$	$300+70+500+20$	$300+500+70+20$	890
b	$2200+3600$	$2000+200+3000+600$	$2000+3000+200+600$	
c	$342+236$	$300+40+2+200+30+6$		
d	$471+228$			
e	$743+426$			
f	$865+734$			
g	$4270+3220$			

Independent practice

1 Use the split strategy to solve these, or find your own sensible short cut.
a $147+232$
b $\quad 184+415$
c $\quad 747+551$
d $\quad 1552+732$
e $\quad 3267+642$
f $6564+4426$
2 Use the rounding (compensation) strategy to solve these, or find another short cut.
a $745-299$
b $\quad 364+401$
c $\quad 276+598$
d $847-302$
e $958-190$
f $\quad 902+304$
3 Choose a strategy to solve these. Explain how you got each answer.
a $649+249=$
b) $1253-199=$ \qquad
\qquad
c $\quad 1750+1750=$ \qquad
\qquad
d $14578-410=$ \qquad
\qquad

4 Rounding (and estimating) are useful strategies for mental calculations. How do we know what number we should round to? Sometimes it is quite obvious: 69 rounds to 70 and 902 rounds to 900 . Do we always round to the nearest ten or hundred?

Look at these facts and figures and decide how to round the numbers.
Explain how you have rounded them.

	Number fact	Rounded number	I rounded this number to the nearest ...
a	Australia has 812972 kilometres of roads.		
b	The Electricity Company of China employs 1502000 people.		
c	The Mexican soccer player, Blanco, earned \$2 943702 in 2009.		
d	The fastest speed recorded at the Indianapolis 500 car race was 299.3 km/h.		
e	The fastest 100-metre sprint time for a woman is 10.49 seconds.		
f	The US department store Walmart employs 2100000 people.		
g	Each Australian eats an average of 17 L 600 mL of ice-cream a year.		
h	The longest rail tunnel is in Switzerland. It is 57.1 km long.		
i	The amount of money the movie Avatar made was \$2 783919000.		
j	Foreign tourists spend \$29 127000000 a year in Australia.		

5 A truck company is offering discounts. Use mental strategies to work out the new prices.

Type	Basic	Deluxe	Premium
Was	$\$ 23990$	$\$ 33629$	$\$ 42158$
Save	$\$ 1500$	$\$ 2139$	$\$ 3199$
New price			

Extended practice

Are calculators always right?

The answer is "yes", but only when they are used properly. Let's suppose Lee wants to add $249523+248614$. Could she trust a calculator answer of 298 137? It's easy to estimate the answer by rounding: $250000+250000=500000$. So, the answer has to be close to 500000 and not 300 000. The calculator answer was "wrong" because the wrong information was put into the calculator.

1 Round and estimate to fill the gaps.

	Problem	Round the numbers	Estimate the answer	Circle the likely answer
	$109897+50157$	$110000+50000$	160000	261054 or 161054
a	$5189-2995$			2194 or 3194
b	$2958+6058$			9016 or 8016
c	$8215-3108$			5907 or 5107
d	$15963+14387$			29350 or 30350
e	$8954-3928$			5026 or 4026
f	$4568+4489$			6057 or 9057
g	$13149-7908$			223321 or 5241
h	$124963+98358$			

2 Estimate each answer, then check on a calculator. If the calculator answer is not close to your estimate, find out what went wrong.

	Problem	Round the numbers	Estimate the answer	Calculator answer
	$6190+1880$	$6000+2000$	8000 (Good estimate)	8070
a	$4155+2896$			
b	$9124-8123$			
c	$24065+5103$			
d	$19753-10338$			
e	$101582+49268$			
f	$298047-198214$			
d	$1089274+1099583$			
h	$1499836+1489967$			

UNIT 1: TOPIC 5
 Written strategies for addition

Everything in its place

Errors in addition problems often result from not putting things in the right place.
For example, it is easy to see what went wrong when Jake tried to add 724 and 216:

| | | 7 | 2 |
| :--- | :--- | :--- | :--- | 4

	7	1	4
+	2	1	6
	9	4	0

If the digits were in the right columns, this addition problem would be easy to solve correctly.

Guided practice

1 Write these vertical algorithms. Look for a pattern in the answers.
a $85+1149$

c $\quad 2980+476$

e $\quad 873+4831+85$

Remember to trade where necessary.

b $\quad 2029+316$

d $\quad 857+3710$

f $4759+87+832$

Independent practice

1 Set out these addition problems vertically. Look for a pattern in the answers.
a $548+563$
d $\quad 3962+482$

g $\quad 458+5379+1940$

$$
\begin{array}{ll}
\text { j } \quad & 5396+546+54+ \\
3955+49
\end{array}
$$

$$
\begin{array}{c|c|c|c|c}
& & & & \\
\hdashline & & & & \\
\hdashline & & & & \\
\hdashline & & & & \\
\hdashline+ & & & & \\
\hline & & & & \\
\hline
\end{array}
$$

e $\quad 3290+869+1396$

h $\quad 49+3721+578+$ 4540

b $\quad 1325+897$

C $\quad 1365+1968$

$+$

$7357+768+64+$ $745+1065$

Once you get the hang of it, you can add numbers of any size!
2) Make up a 5-line addition algorithm for which the answer is 99999 .

Make sure each line of the algorithm has at least 3 digits.

3 Did you know that in Australia there are more kilometres of unpaved roads than paved roads? However, in France, there are zero kilometres of unpaved roads.
a Find the total length of roads for each country.

Country	Length of paved roads (km)	Length of unpaved roads (km)	Total length of roads (km)
USA	4165110	2265256	
India	1603705	1779639	
China	1515797	354864	
France	951220	0	
Japan	925000	258000	
Spain	659629	6663	
Canada	415600	626700	
Australia	336962	473679	
Brazil	96353	1655515	

b Apart from Australia, which other countries have more kilometres of unpaved roads than paved roads? \qquad
c The total of paved roads in which two countries is 5680907 ?
\qquad
d The unpaved roads of which two countries are closest to 1 million kilometres?

Extended practice

Foreign students

Use the table to complete these activities.
1 Write a vertical algorithm and find the total number of foreign students in the USA and UK.

Countries with the highest numbers of foreign students

	USA	595874
	UK	351470
	France	246612
	Australia	211526
	Germany	206875

2 Some people use a calculator to check an answer. Find the total number of foreign students in Australia and the UK by writing an algorithm. Then check the answer with a calculator.

3 Imagine you wanted to find the total number of foreign students in France and Germany and in your written algorithm the answer is 453487. The calculator check gives the answer 453397. Which answer would you trust? Check to find the correct answer.

Working with trillions

4 How much of our world is covered by oceans? Use the table to find out.

Pacific Ocean	$155557000000 \mathrm{~km}^{2}$
Atlantic Ocean	$76762000000 \mathrm{~km}^{2}$
Indian Ocean	$68656000000 \mathrm{~km}^{2}$
Southern Ocean	$20327000000 \mathrm{~km}^{2}$
Arctic Ocean	$14056000000 \mathrm{~km}^{2}$

Answer: \qquad

UNIT 1: TOPIC 6

Written strategies for subtraction

Trading

To make 3465-1329 easier to solve, we need to trade. It's like rewriting the number on the top line:
$3000+400+60+5$ is the same as
$3000+400+50+15$

There aren't enough ones. Trade a ten. That leaves 5 tens

Now there are
$10+5$ ones $=15$

Guided practice

2

b

d

f

Tth	Th	H	T	0
2	3	5	9	8
-1	4	6	9	9

Independent practice

1 Complete these. Look for a pattern in the answers.
a

b

c		9	1	3	6	0
	-	1	4	8	1	7

d

	9	2	9	7	2
-		5	3	1	8

e

f

g

h

$$
\begin{array}{l|l|l|l|l|l}
& 9 & 7 & 7 & 4 & 6 \\
- & 7 & 4 & 2 & 9 & 0 \\
\hline & & & & & \\
\hline
\end{array}
$$

j

2 Use the following digits once each to make the largest and smallest numbers possible. Then find the difference between them.

$$
\begin{array}{l|l|l|l|l|l|l|}
\hline 8 & 3 & 7 & 2 & 4 & 5 & 9 \\
\hline
\end{array}
$$

3 You can also trade across more than one column. trade across one column at a time.

More ones are needed
... but there are no tens

... so trade from the
HUNDREDS to the TENS first.

Trade a hundred.
That leaves 3 hundreds.

Now there are 10 tens.

Trade a ten.
That leaves 9 tens.

	Th	H	T	0
	3	$3 /$	4_{2}	${ }_{5}$
-	1	3	2	9
	2	0	7	6

a

	1	2	7	0	4
-		9	4	3	6

b

	2	5	0	1	2
-	1	2	3	9	3

c

$$
\begin{array}{l|c|c|c|c|c}
& 4 & 0 & 3 & 0 & 4 \\
- & 1 & 7 & 6 & 4 & 8 \\
\hline & & & & & \\
\hline
\end{array}
$$

d

e	5	0	5	2	0	5	
	-	1	2	9	4	2	8

f

9		2	0	0	8
	-	1	2	5	9

h		1	6	0	0	2
	-	1	2	3	5	3

$$
\begin{array}{l|c|c|c|c|c|c}
& 7 & 4 & 0 & 0 & 5 & 8 \\
- & 4 & 2 & 0 & 0 & 0 & 4 \\
\hline & & & & & & \\
\hline
\end{array}
$$

	1	0	0	0	0	0
-		3	4	3	7	8

Extended practice

Checking subtraction by using addition

1 One way to check a subtraction answer is by addition. For example, 100-75 is 25 . We can be sure of this by adding 25 to 75 .
a Does 317418 - 123783 = $\mathbf{1 9 3} \mathbf{6 3 5}$ or $\mathbf{1 9 3} \mathbf{3 3 5}$? Check by adding, and then complete the subtraction.

b Does 326 175-199 879 = $\mathbf{1 2 6 2 9 6}$ or $\mathbf{1 2 6 2 0 6}$? Check by adding, and then complete the subtraction.

c Does 350044 - $158254=\mathbf{1 9 2 8 9 0} \mathbf{8 9} \mathbf{1 9 1} \mathbf{7 9 0}$? Check by adding, and then complete the subtraction.

2 Here is a subtraction and addition trick using 3 different digits, such as 3, 6 and 2 or 3, 4 and 5 . Try with other sets of 3 digits here and on another sheet of paper.

Make the largest number		6	3	2			5	4	3				
Make the smallest number	-	2	3	6		-	3	4	5				
Subtract		3	9	6	OR		1	9	8	OR			
Reverse the number	+	6	9	3		+	8	9	1				
Add	1	0	8	9		1	0	8	9				

a Use other sets of 3 different digits to prove that the answer is always the same.
b What happens if two of the three digits are the same?

UNIT 1: TOPIC 7

Mental strategies for multiplication and division

The ten trick

Multiplying by 10 in your head is easy - but you don't just add a zero!

If we just added a zero to multiply $\$ 1.50$ by 10 , the answer would be $\$ 1.500$ - and that's not correct!

Guided practice

1 When you multiply by 10 , the digits move one place bigger (to the left) and the zero fills the space. When you multiply by 100 they move two places, and so on. Complete the grid.

2 When you divide by 10, the digits move one place smaller (to the right). Use decimals if necessary.

	\div	10	Write the multiplication fact partner
	120	12	$12 \times 10=120$
	45	4.5	$4.5 \times 10=45$
a	370		
b	4700		
c	2000		
d	$\$ 22.50$		
e	54		

3 When you divide by 100, the digits move two places to the right. Use decimals if necessary.

	\div	100	Write the multiplication fact partner
	500	5	$5 \times 100=500$
	$\$ 275$	$\$ 2.75$	$\$ 2.75 \times 100=\$ 275$
a	700		
b	$\$ 495$		
c	5000		
d	12000		
e	8750		

Independent practice
1 Multiplying by multiples of 10 using doubling strategies.

$\left.$| x | | 10 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| [double] | | | | | 40 |
| :--- |
| [double |
| again] |\quad| 80 |
| :--- |
| [double |
| again] | \right\rvert\,

2 Dividing by multiples of 10 using halving strategies.

	\div	$\div 10$	$\div 20$	$\div 40$	$\div 80$		
[halve it]							Ihalve
:---							
again]		[halve					
:---							
again]							

3 Multiplying large numbers by 5 .

The secret is to find a short cut thatworks for YOU!

	by 10			
a	24	840	420	$84 \times 5=420$
b	68			
c	120			
d	500			
e	1240			

4 Dividing large numbers by 5.

$\div 5$	First divide by 10	Then double it	Division fact	
a	420			
b	350			
c	520			
d	900			
e	1200			
an				

5 Multiplying by splitting the multiple of 10 . 25×30 is the same as 25×10 three times, so you can find the answer by splitting 30 into 3 tens.

	$\times 30$	First $\times 10$	Then $\times 3$	Multiplication fact
	25	250	750	$25 \times 30=750$
a	15			
b	22			
c	33			
d	150			
e	230			

6 Sometimes it's easier to split the multiple of 10 differently. 25×30 is also the same as finding 25×3, ten times.

	$\times 30$	First $\times 3$	Then $\times 10$	Multiplication fact
	25	75	750	$25 \times 30=750$
a	15			
b	22			
c	33			
d	150			
e	230			

7 Use your choice of strategy. Be ready to explain how you got the answer.

a	15×40	b	22×40
c	25×50	d	34×50
e	14×60	f	125×40
g	15×80	h	72×20
i	19×30	j	\$1.20 $\times 60$
k	\$2.25 $\times 40$	I	$832 \div 2$
m	$832 \div 4$	n	$248 \div 4$

8 Sam has a coin collection with 437 twenty-cent coins in it. Use a mental strategy to find out how much money Sam has.

Answer:

Extended practice

1 You can use the split strategy to multiply 24 by 15 . Split it into 24×10 and 24×5.

	$\times 15$	$\times 10$	Halve it to find $\times 5$	Add the two answers	Multiplication fact
	24	240	120		
a	12				
b	32				
c	41				
d	86				
e	422				

2 Here is a mental strategy for multiplying by 13.

	$\times 13$	Number $\times 10$	Number $\times 3$	Add the two answers	Multiplication fact
	22	220	66		
a	15				
b	12				
c	23				
d	31				
e	25				

3 Choose a strategy to solve these problems. Be ready to explain how you got the answers.
a 25×100
c $80 \div 20$ \qquad d $900 \div 30$
f $\$ 36 \div 20$
e 22×400 \qquad
h $\$ 36 \div 40$
g $\quad \$ 3.40 \times 20$ \qquad

4 When you are resting, your heart beats about once every second. About how many times does your heart beat in
a $\quad 1$ minute?
b 1 hour?

UNIT 1: TOPIC 8

Written strategies for multiplication

Extended and short multiplication

You can write the multiplication for 43×5 in either its long or short form.

Extended multiplication

$\left.\begin{array}{l|l|l} & & 4\end{array}\right] 3$

Short multiplication

Guided practice

1 Extended and short multiplication.

Independent practice

Multiplying by a multiple of 10 is no harder than multiplying by a single-digit number, as long as you remember the " 10 trick". For example, what is 43×20 ?

It's the 10 trick, so everything moves over one place.

1

a				
	\times		2	0
				0
d			4	6
	\times		4	0
g		1	5	2
	\times		2	0
j		1	3	8
	\times			4

b

27
$\times \quad 20$
0

e
67
$\times 30$
\qquad
h
246
$\times \quad 40$
\qquad
k

$$
2658
$$

\times \qquad

Remember the zero - it moves everything over one place.
\qquad
\qquad

2 Thirty students go on a school camp. It costs \$146 for each student. What is the total cost?

3 The crystal in a quartz watch vibrates 32768 times a second. How many times does it vibrate in one minute?

Working-out space

4. a What is 24×23 ?

Make two multiplications.

$24 \times 23=\square$
b What is 23×35 ?
c What is 35×28 ?

$23 \times 35=\square$
\square
c What is 42×26 ?
$39 \times 27=\square$

$42 \times 26=\square$

Extended practice

At the top of page 36, you looked at a way of multiplying 36×25. You can make this shorter by putting both multiplications into one algorithm: $(36 \times 5)+(36 \times 20)$.

1

$\begin{array}{r}42 \\ \times \quad 27 \\ \hline\end{array}$

e

75
$\times \quad 15$

h

i
c $\begin{array}{r}39 \\ \times \quad 19 \\ \hline\end{array}$
f
64
37
$\times \quad$

2 Use the working-out space to answer these.
a At Mount Waialeale in Hawaii, it rains 335 days a year. If you lived there for 35 years, how many rainy days would you have?

b Amy sneezed 2700 times a day for two years. How many times did she sneeze in the month of January?

Working-out space

UNIT 1: TOPIC 9

Written strategies for division

Two ways of writing division problems

150 divided by 2 can be written as $150 \div 2$ or as $2 \longdiv { 1 5 0 }$
If you need to do written working for a problem such as $135 \div 3$, do it like this:

There aren't enough hundreds to make groups of 3 .
We start with 13 tens.
13 tens split into groups of $3=4 \mathrm{r} 1$
$3 \longdiv { 1 3 5 }$

Trade the ten for 10 ones. This makes 15 ones.
15 split into groups of $3=5$
$3 \longdiv { 1 3 ^ { 1 5 } 5 }$

Keep the answer digits in the right columns.

Guided practice

1 Complete these extended and short divisions.
a $4 \longdiv { 2 7 ^ { 3 } 6 }$
b $2 \longdiv { 8 8 4 }$
c $7 \longdiv { 6 5 8 }$
d $4 \longdiv { 4 4 0 }$
e $2 \longdiv { 8 6 4 2 }$
f
$3 \longdiv { 3 6 0 3 }$
g $4 \longdiv { 3 7 3 6 }$
h $5 \longdiv { 2 4 2 0 5 }$
i
$7 \longdiv { 3 0 2 5 4 }$

ene
j $6 \longdiv { 2 5 9 3 2 } \mathrm { k } 8 \longdiv { 9 8 7 4 4 } \quad 9 \longdiv { 4 8 8 8 9 8 }$

$\begin{array}{r}\text { right } \\ \downarrow \\ 4 T 0 \\ 45 \\ 3 \longdiv { 1 3 5 }\end{array} ~$

2 Rewrite using the Γ symbol and solve.
a $1075 \div 5$

d $5372 \div 2$

b $\quad 1746 \div 3$

e $2636 \div 4$

c $2148 \div 6$
\square
f $2436 \div 7$
\square

Independent practice

Here are two ways of showing a remainder at the end of a division problem:

$$
35 \div 2=17 r 1 \text { or } 35 \div 2=17 \frac{1}{2}
$$

1 Write the remainder in two ways.

a	$14 \div 3$			b
c				
c	$39 \div 4$			
e	$77 \div 9$		d	$65 \div 8$
g	$84 \div 9$		f	$61 \div 7$
			h	$58 \div 6$

2 Complete each algorithm, showing the remainder in two ways.
a
$4 \longdiv { 4 6 7 }$
$4 \longdiv { 4 6 7 }$
b $3 \longdiv { 2 7 2 }$
$3 \longdiv { 2 7 2 }$
c $6 \longdiv { 1 9 7 }$
$6 \longdiv { 1 9 7 }$
d $5 \longdiv { 7 4 2 }$
$5 \longdiv { 7 4 2 }$
e $3 \longdiv { 2 5 7 5 }$
$3 \longdiv { 2 5 7 5 }$
f $9 \longdiv { 1 6 8 4 }$
$9 \longdiv { 1 6 8 4 }$
g $6 \longdiv { 4 1 6 5 }$
$6 \longdiv { 4 1 6 5 }$
h $7 \longdiv { 2 3 1 9 }$
$7 \longdiv { 2 3 1 9 }$

3 In a real-world division problem, we have to decide what to do with a remainder. Do we leave it as a remainder, or divide it into fractions? Give a real-world answer to each of these problems. Be ready to justify your answer.
a Two children share a bag of 125 marbles. How many do they each get?
\qquad
b Two children share 15 donuts. How many do they each get?

If two people shared $\$ 25$, we would not leave the remainder as $\$ 1$, nor would we call it $\frac{1}{2}$ a dollar. We would use a decimal: $\$ 25 \div 2=\$ 12.50$
To write an algorithm, we need to put a decimal point and show "zero cents".
\$ 12.50
$2 \longdiv { 2 5 . 0 0 }$

4 Put in the decimal point and the zeros to complete these.
a $\quad \$ \longdiv { 5 3 . 0 0 }$
\$
d $4 \longdiv { 7 3 }$
\$
b $\quad \begin{aligned} & \$ \\ & 74\end{aligned}$
c
\$
e 8
$\$ \longdiv { 1 3 2 }$
\$
f $6 \longdiv { 1 2 9 }$

5 We can use decimals for other remainders.
For example, if Than scores $\frac{17}{20}, \frac{18}{20}, \frac{19}{20}$ and $\frac{15}{20}$ in four tests,
his average score is the total $(69) \div 4=17 \mathrm{r} 1$, or $17 \frac{1}{4}$ or $4 \frac{17.25}{6^{2} 9 .^{1} 0^{2} 0}$
a $4 \longdiv { 5 9 5 . 0 0 }$
b $5 \longdiv { 6 2 8 }$
c $8 \longdiv { 5 0 6 }$
d $5 \longdiv { 6 8 4 }$
e $4 \longdiv { 1 3 4 7 }$
f $8 \longdiv { 9 8 5 2 }$
g $6 \longdiv { 1 7 1 9 3 }$
h $5 \longdiv { 1 1 5 9 8 }$
$8 \longdiv { 5 2 1 8 6 }$

6 Solve the following problems. Think of the most appropriate way to deal with the remainders.
a $\quad 145$ marbles are divided between four people. How many do they each have?
b Four people share a prize of $\$ 145$. How much does each person receive?

Extended practice

Sometimes a decimal remainder goes further than two decimal places. We can choose to stop after a certain number of places. For example, if Than scores 18 out of 20 , then 15 , then 19 , his average score is 52 divided by 3 :

Stop after 2 decimal places
$=17.33$
$\frac{17.33333}{3 \longdiv { 5 ^ { 2 } 2 \cdot 0 ^ { 1 } 0 ^ { 1 } 0 ^ { 1 } 0 ^ { 1 } 0 }}$

1 Show the remainder as a decimal.

Stop after two decimal places.
a $3 \longdiv { 8 7 4 }$
b $4 \longdiv { 4 9 7 }$
c $7 \longdiv { 5 8 2 }$
d $6 \longdiv { 2 5 4 }$
e $9 \longdiv { 7 2 4 }$
f $3 \longdiv { 5 4 8 5 }$
g $\quad 5 \longdiv { 1 7 4 3 }$
h $7 \longdiv { 8 5 8 3 }$
i
$4 \longdiv { 4 5 9 7 9 }$
j $6 \longdiv { 8 5 9 2 8 } k$
$5 \longdiv { 2 5 4 7 6 }$
$9 \longdiv { 9 7 2 6 5 }$

Write the correct digit in each gap.
a

b

C
478.25
e $\$ 726.50 \div \square=\$ 363.25$
g $\quad 2643.75 \div \square=528.75$

Working-out space

d $3 \square 6 \div 8=42$
f $1837 . \square \div 3=612.5$

3 The geyser Old Faithful in the United States erupts 7300 times in a regular year (not a leap year). How many times does it erupt each day?

UNIT 1: TOPIC 10

Integers

If you ask a seven-year-old, "What is $5-8$?" they will probably answer, "You can't take 8 away from 5." However, a calculator would give the answer:

$$
5-8=-3
$$

Integers are whole numbers. They can be positive (greater than zero) or negative (less than zero). For -3 , we say negative 3 .

Guided practice

1 Fill in the gaps on this number line.

2 The red dot is at zero. Draw these shapes on the number line:
a a blue dot at -3
b a black dot at 2
c a triangle at -1
d a square at 4
e a star at -5

3 The value of the highest number for the shapes in question 2 is 4 . Write the number values of the shapes from lowest to highest.
\qquad

4 | $\begin{array}{c}\text { The }>\text { sign } \\ \text { means bigger } \\ \text { than and }<\end{array}$ | a | $5>0$ |
| :---: | :---: | :---: |
| meanslessthan. | $0<-1$ | | \qquad

$1>-3$ means that 1 has a greater value than negative 3 .
d $\quad-2>-1$ Write True or False for these statements:

$$
\text { e } \quad-4<0
$$

f $5=-5$
g $3<-4$
h $\quad-5>-10$

Independent practice

A number line can show operations such as $2+4$ or 1-3.

Increase 2 by 4.

Number sentence: $2+4=6$

Decrease 1 by 3.

Number sentence: $1-3=-2$

1 Show these operations on the number lines. Write the number sentence for each operation.
a Increase -2 by 4 .

Number sentence: \qquad
c Decrease 4 by 7 .

Number sentence: \qquad
e Decrease -3 by 5 .

Number sentence: \qquad
g Increase -8 by 10 .

Number sentence: \qquad
i Increase -7 by 15 .

Number sentence:
b Decrease 2 by 3 .

Number sentence: \qquad
d Increase -6 by 5 .

Number sentence: \qquad
f Increase -8 by 8 .

Number sentence: \qquad
h Decrease 7 by 11 .

Number sentence: \qquad
j Decrease 6 by 13.

$\underset{-8-7}{\stackrel{\mid}{\stackrel{\mid}{\mid c}} |$| \mid | \mid |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$}$

Number sentence: \qquad

2 Write what a calculator would show if you pressed the following:
a $4-5=$ \qquad b $15-16=$ \qquad c $4-8=$ \qquad
d) $7-12=$ \qquad
e $10-20=$ \qquad f. $40-100=$ \qquad

3 Find the counting number for these number lines, then fill in the missing numbers.

(4) The table shows the 4 am temperatures over one week in a mountain range.

Saturday	$-1^{\circ} \mathrm{C}$
Sunday	$1^{\circ} \mathrm{C}$
Monday	$-2^{\circ} \mathrm{C}$
Tuesday	$2^{\circ} \mathrm{C}$
Wednesday	$0^{\circ} \mathrm{C}$
Thursday	$-4^{\circ} \mathrm{C}$
Friday	$-3^{\circ} \mathrm{C}$

a Write the temperatures on the thermometer.
b Write the correct day next to each temperature.
c The coldest day was \qquad
d The coldest temperature was \qquad - colder than the warmest.

5 Each of these letters represents the value of a number. From the information given, plot the letters in the correct place on the number line.

- $\mathrm{H}>3$ but <5
- $\quad S>H$
- $M<A$
- $\mathrm{T}<0$ but >-2
- $\quad \mathrm{A}<-3$ but >-5

Extended practice

Average maximum January temperature
1 Use the graph to answer these questions.
a Which cities have negative average January temperatures?
b In which city is the average temperature $5^{\circ} \mathrm{C}$ higher than Helsinki?
c If the average temperature in Vienna were to fall by $6^{\circ} \mathrm{C}$, what would the new average temperature be? \square
d Which three pairs of cities have a temperature difference of $33^{\circ} \mathrm{C}$?
\qquad

2 Sometimes banks allow people to withdraw money even if there is not enough money in their account. This is like a loan. When this happens, the person has a negative amount of money. A bank statement is one way to check how much is in the account. Fill in the balances.

INTERNATIONAL BIG BANK			
Date	Paid in \$	Paid out \$	Balance \$
3 May	100		100
4 May		120	
9 May	30		
14 May		50	
31 May	45		

3 People often use credit cards for shopping. Until a credit card is used, the amount owing on it is neither negative nor positive. The balance is zero.
a If Tran uses a credit card to pay a $\$ 100$ bill, what is the balance? \qquad
b At the end of the month, Tran can choose to pay off some or all of his negative balance. If he chooses to pay back $\$ 10$, he would still owe more than $\$ 90$. Why do you think this is?

UNIT 1: TOPIC 11
 Exponents and square roots

Exponents

We often look for shortcuts in mathematics. A shortcut for $3+3$
$+3+3+3$ is $3 \times 5=15$.
exponent
(or index
or power)
We can also use exponents as shortcuts. A short way of writing 3×3 is 3^{2}. The base number is 3 . The exponent is 2 . It can also be called the index or power. The exponent tells us to use the base number (3) in a multiplication two times. So, $3^{2}=3 \times 3=9$.

Guided practice

1 Write each multiplication as a base number and exponent. Remember to write the exponent smaller and higher than the base number.

	Multiplication
	$3 \times 3 \times 3$
a	$2 \times 2 \times 2 \times 2 \times 2$
b	$4 \times 4 \times 4$
c	$8 \times 8 \times 8 \times 8$
d	$5 \times 5 \times 5 \times 5 \times 5$
e	$7 \times 7 \times 7 \times 7 \times 7 \times 7$
f	$10 \times 10 \times 10 \times 10$

2 Fill in the gaps in the table.

Base number and exponent	Number of times the base number is used in a multiplication	Multiplication	Value of the number
	4^{2}	two times	4×4

For 3^{3}, we can say 3 to the third power, 3 to the power of three or 3 cubed.

Square roots

To understand what is meant by the square root of a number, we need to look at square numbers.
Four squared can be written as 4^{2}. The diagram on the right shows what it looks like.
$4^{2}=4 \times 4=16$

A square root goes the opposite way. The symbol for square root is $\sqrt{ }$.

So if 4 squared is 16 , the square root of 16 is 4 . We can write it like this:
square root $\sqrt{ } 16=4$.

Guided practice

3 Find the square root of these numbers. Remember to ask the question: what number multiplied by itself makes the number?

	Starting number	What number multiplied by itself makes the number?	Square root of the starting number	Number fact
	16	$4 \times 4=16$	4	$\sqrt{ } 16=4$
a	4			
b	36			
c	9			
d	64			

The starting numbers in question 3 were square numbers. If the starting number is not a square number, then we give the approximate the square root.

Find the approximate square roots of these numbers.

	Starting number	Which two square numbers is it between?	What are their square roots?	The square number is between
7	4 and 9	$\sqrt{4}=2$ and $\sqrt{ } 9=3$	2 and 3	
a	10			
b	42			
c	20			
d	52			

Independent practice

Base numbers with exponents can look small, such as 2^{7}. However, when you expand the number the value can be quite large. For example, the value of 2^{7} is greater than 100.

1 Find the value of these numbers. Begin by expanding the number. You may need a calculator for some.
a $\quad 2^{7}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=$
b $\quad 5^{5}=$
c $\quad 3^{6}=$ \qquad
d) $4^{5}=$ \qquad
e $\quad 7^{4}=$ \qquad
2. Circle the number with the greater value in each pair. a 9^{4} or 8^{5} b $\quad 5^{3}$ or 3^{5}

3 Find the value of the exponent.
a 5 to the power of \qquad $=15625$
b 10 to the power of \qquad $=1$ million

4 Find the approximate square root, then the actual square root (to two decimal places). You will need a calculator with a square root function for the actual square root.

	Starting number	The approximate square root is between	Actual square root (to two decimal places)	Number fact
	5	2 and 3	2.24	$\sqrt{5}=2.24$
a	40			
b	14			
c	30			
d	99			

Extended practice

Sometimes you will see 2^{5} written like this: $2 \wedge 5$. This can be useful if you are using a computer. The \wedge symbol is usually above the 6 key.

1 Find the value of the following.
a $\quad 5^{\wedge} 2=$
b $\quad 3 \wedge 4=$
c $\quad 10 \wedge 4=$
d $\quad 1 \wedge 10=$

Negative exponents

A base number can have a negative exponent, like 2^{-2}. Negative is the opposite of positive.
A positive exponent involves multiplication. For example, $2^{2}=2 \times 2=4$.
The opposite of multiplication is division. A negative exponent involves division.
A negative exponent tells us how many times to divide 1 by the base number.
2^{-2} tells us to divide 1 by the base number (2) and then divide by 2 a second time.
First time: Divide 1 by $2=\frac{1}{2}$ or 0.5 .
Second time: Divide $\frac{1}{2} \div 2=\frac{1}{4}$ or 0.25 .
So, $2^{-2}=1 \div 2 \div 2=0.25$.

2 Find the negative exponents. You may need a calculator for some.
a $\quad 8^{-1}=1 \div 8=$ \qquad b $\quad 8^{-2}=1 \div 8 \div 8=$
c $\quad 4^{-1}=$ \qquad d $\quad 4^{-2}=$
e $\quad 10^{-2}=$ \qquad f $\quad 10^{-3}=$
\qquad

3 In question 2, we started with 1 and then divided. A different way of looking at positive exponents it is to start at 1 and then multiply. For example, $3^{2}=1 \times 3 \times 3=9$. Find the value of these by expanding in the same way.
a $\quad 6^{3}$
b $\quad 4^{4}$

4 What if the exponent is 1? Try with various numbers. Write a sentence about what happens to the base number when the exponent is 1 .

UNIT 2: TOPIC 1

Fractions

A fraction is a part of something

A fraction can be part of a whole thing:

Three-eighths of the circle are shaded.

The frog is $\frac{3}{4}$ of the way along the line.

A fraction can also be part of a whole group, or quantity:

A quarter of the beads are red.

Guided practice

1 Write these fractions in words and numbers.
a What fraction is red?

b What fraction is white?

c What fraction is blue?

d What fraction is green?

one- \qquad $\underline{\square}$ \qquad
 \longrightarrow

2 Write these fractions.
a What fraction is going towards Melbourne?
b Shade $\frac{1}{3}$ of the stars.

(3) The diamond is $\frac{1}{10}$ of the way along the number line.

a What fraction describes the position of the hexagon?
b Draw a smiley face $\frac{3}{10}$ of the way along the line.

c How much further along the line than the diamond is the circle? \qquad
d Draw a triangle that is $\frac{1}{10}$ past the halfway position on the line.

Independent practice

(1) The fraction wall shows that $\frac{2}{4}$ is equivalent to $\frac{1}{2}$.
a What other fractions on the fraction wall are equivalent to $\frac{1}{2}$?
b Write a fraction that is equivalent to $\frac{1}{2}$ but is not on the fraction wall.

2 Find a fraction that is equivalent to:
a $\frac{2}{10} \quad \square$
b $\frac{1}{6} \quad \square$
c $\frac{3}{12}$

d $\frac{5}{6} \quad \square$
e $\frac{4}{5}$

f $\quad \frac{3}{9}$

Equivalent fractions are the same size.

a $\frac{4}{6}=\frac{\square}{3} \quad$ b $\quad \frac{\square}{10}=\frac{4}{5} \quad$ c $\quad \frac{6}{\square}=\frac{3}{4}$
d) $\quad \frac{6}{\square}=\frac{2}{3}$
e $\frac{2}{3}=\frac{\square}{12}$
f $\quad \frac{3}{\square}=\frac{9}{12}$

We can show equivalent fractions in a diagram.

```
\frac{1}{2}}=\frac{2}{4
```

4. Shade to show these fractions.
a Shade to show that $\frac{6}{8}$ is equivalent to $\frac{3}{4}$. Write the number sentence.
b Shade to show a fraction that is equivalent to $\frac{4}{5}$. Write the number sentence.

5 Divide and shade the shapes to show that:
a $\frac{3}{6}$ is equivalent to $\frac{1}{2}$.

b $\frac{6}{8}$ is equivalent to $\frac{3}{4}$.

6

a The circle is $\frac{1}{4}$ of the way along the number line. Write another fraction that describes its position. \qquad
b Apart from $\frac{9}{12}$, what other fraction describes the position of the pentagon?
\qquad
c Write two equivalent fractions to describe the position of the hexagon.
d Draw a star $\frac{2}{3}$ of the way along the line.

Extended practice

1 If you look at an equivalent fraction such as $\frac{2}{4}=\frac{1}{2}$, you can see that there is a connection between the numerator and denominator.
What is the connection between the numerator and the denominator
 in each of these pairs of fractions?
a $\quad \div 4$ $\frac{4}{8}=\frac{1}{2}$
b

$\frac{3}{9}=\frac{1}{3}$
c

$\frac{4}{10}=\frac{2}{5}$
d

$\frac{9}{12}=\frac{3}{4}$

$\frac{8}{12}=\frac{2}{3}$

g

h

i

j

k

$\frac{1}{2}=\frac{6}{12}$

2 Choose a method to find a fraction that is equivalent to each of these:
a $\frac{4}{6}$

3 Reduce these fractions to their lowest equivalent form.
a $\frac{8}{16} \square$
b $\frac{16}{20} \square$
C $\frac{8}{24}$

d $\frac{9}{27} \square$
e $\frac{6}{36}$

\square

UNIT 2: TOPIC 2
 Adding and subtracting fractions

Adding and subtracting like fractions (such as $\frac{3}{4}-\frac{1}{4}$) is as easy as working out 3 jelly beans -1 jelly bean.

With unlike fractions, use your knowledge of equivalent fractions to add or subtract.

$=\quad \frac{9}{8}$ or $1 \frac{1}{8}$

Guided practice

1 a

2

$=\quad \frac{3}{8}$

$=\quad \frac{\square}{8}$
b

$$
\frac{3}{4}-\frac{1}{2}=\frac{3}{4}-\frac{\square}{4}=\frac{\square}{4}
$$

Independent practice

(1) $\frac{3}{8}+\frac{2}{8}=$ \qquad b) $\frac{5}{10}+\frac{3}{10}=$ \qquad c $\frac{2}{5}+\frac{2}{5}=$ \qquad
d $\frac{3}{7}+\frac{2}{7}=$ \qquad e $\frac{7}{12}+\frac{3}{12}=$ \qquad f $\frac{2}{9}+\frac{5}{9}=$ \qquad
g $\frac{1}{6}+\frac{4}{6}=$ \qquad h $\frac{5}{10}+\frac{5}{10}=$ \qquad $\frac{3}{8}+\frac{4}{8}=$ \qquad

2 \qquad b $\frac{8}{9}-\frac{2}{9}=$ \qquad c $\frac{11}{12}-\frac{5}{12}=$ \qquad
d $\frac{3}{4}-\frac{2}{4}=$ \qquad e $\frac{5}{7}-\frac{3}{7}=$ \qquad f $\frac{9}{10}-\frac{3}{10}=$ \qquad
g $\frac{8}{9}-\frac{4}{9}=$ \qquad h) $\frac{5}{6}-\frac{2}{6}=$ \qquad

3
a $\frac{2}{8}+\frac{1}{4}=$ \qquad b $\frac{3}{10}+\frac{2}{5}=$
\qquad Remember to find a common denominator when adding or subtracting unlike fractions.
e $\quad \frac{7}{10}+\frac{1}{5}=$ \qquad
d $\frac{3}{4}+\frac{1}{8}=$ \qquad
c $\frac{1}{3}+\frac{1}{6}=$ \qquad f $\frac{2}{9}+\frac{1}{3}=$ \qquad
(4) a $\frac{3}{8}-\frac{1}{4}=$ \qquad b $\frac{8}{10}-\frac{1}{2}=$ \qquad
c $\frac{7}{12}-\frac{1}{4}=$ \qquad
d $\frac{8}{9}-\frac{1}{3}=$
\qquad
e $\frac{3}{4}-\frac{1}{2}=$ \qquad f $\frac{9}{12}-\frac{1}{4}=$ \qquad

5 Shade the diagram to solve the addition problem. Write a number sentence that matches the problem.

6 Use improper fractions and mixed numbers if the answer is greater than one whole. For example, $\frac{3}{4}+\frac{2}{4}=\frac{5}{4}=1 \frac{1}{4}$
a $\frac{7}{8}+\frac{5}{8}=$ \qquad b $\frac{5}{9}+\frac{7}{9}=$ \qquad
c $\frac{8}{12}+\frac{8}{12}=$ \qquad d $\frac{3}{4}+\frac{3}{4}=$ \qquad e $\frac{7}{10}+\frac{9}{10}=$ \qquad
f $\frac{5}{6}+\frac{4}{6}=$ \qquad g $\frac{5}{8}+\frac{3}{8}=$ \qquad h $\frac{2}{3}+\frac{2}{3}=$ \qquad

7 Solve these.
a $1 \frac{7}{8}-\frac{3}{8}=$ \qquad b $1 \frac{5}{9}-\frac{4}{9}=$ \qquad
d $2 \frac{3}{4}-\frac{1}{4}=$ \qquad e $\quad 3 \frac{5}{8}-\frac{7}{8}=$ \qquad
g $2 \frac{1}{9}-\frac{8}{9}=$ \qquad h $3 \frac{3}{8}-\frac{5}{8}=$ \qquad c $1 \frac{7}{10}-\frac{5}{10}=$ \qquad
f $4 \frac{8}{10}-\frac{9}{10}=$ \qquad

8 Solve these.
a $\frac{7}{8}+\frac{1}{4}=$ \qquad b $\frac{9}{10}+\frac{1}{5}=$ \qquad
c $\quad 1 \frac{2}{3}+\frac{5}{6}=$ \qquad d) $2 \frac{3}{4}+\frac{5}{8}=$ \qquad
e $\quad 1 \frac{7}{10}+\frac{4}{5}=$ \qquad
f $3 \frac{7}{9}+\frac{2}{3}=$
\qquad

9 Solve these.
a $1 \frac{5}{8}-\frac{3}{4}=$ \qquad
c $1 \frac{5}{12}-\frac{1}{2}=$ \qquad
e $\quad 2 \frac{3}{4}-1 \frac{1}{2}=$ \qquad
b $2 \frac{3}{10}-\frac{1}{2}=$ \qquad
d. $1 \frac{2}{3}-\frac{5}{6}=$ \qquad
f $1 \frac{1}{12}-\frac{2}{3}=$ \qquad

Extended practice

1 From the way this cake is arranged, it is obvious that the slices will add together to make a whole cake:

Prove that these pieces can also be added together to make a whole cake. (Hint: Look at the size of each fraction.)

Working-out space

2 Write each answer in its simplest form.
\qquad b $1 \frac{5}{6}+\frac{7}{12}=$ \qquad
c $3 \frac{1}{4}-1 \frac{5}{8}=$ \qquad d $1 \frac{13}{100}-\frac{1}{10}=$ \qquad
e $\quad 2 \frac{5}{12}+3 \frac{4}{12}=$ \qquad f $3 \frac{2}{3}-2 \frac{1}{6}=$ \qquad
g $2 \frac{1}{3}+1 \frac{1}{4}=$ \qquad

3 At a party, there are parts of four cakes left over. One cake was split into quarters, but the others were split into different fractions. The total amount left is one and one-sixth. What fraction of each cake might be left?

Working-out space

UNIT 2: TOPIC 3
 Decimal fractions

Common decimal fractions

The most common decimal fractions are tenths, hundredths and thousandths.

If this is one whole ...

1

this is one-tenth

Guided practice

1

a

The amount shaded is
b

The amount shaded is
c

The amount shaded is

If you had 500 of the jelly beans, you could call them a half, $\frac{500}{1000}$ or 0.5 .

How many of the jelly beans do these fractions mean?
a 0.002
b 0.008 \qquad _
h 0.999
i 0.001
j 0.01
k 0.1
\| 0.25

Independent practice

1 Shade:
a 0.05

b $\quad 0.35$

c $\frac{33}{100}$

d 0.9

2 Write True or False next to each of these:
a $\quad 0.5>0.05$ \qquad g $\quad 0.04=\frac{4}{1000}$
b $\quad \frac{7}{1000}<0.007$ \qquad h $\quad 1.001>0.99$
c $\frac{17}{100}=0.17$ \qquad i $\quad 3.25=3 \frac{1}{4}$
d $\quad 0.009>0.01$ \qquad j $\quad 5.052>5.502$
e $\quad \frac{175}{1000}=0.175$ \qquad k. $2.430>2.43$
f $\frac{1}{4}>0.025$ \qquad || $9.999<10$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3

a Colour 0.15 red.
b Colour 0.05 yellow.
c Colour 0.45 blue.
d Colour one-tenth green.
e Write the unshaded amount as a fraction and as a decimal.
\qquad

4 Order these from smallest to largest:

$$
\begin{array}{lllll}
0.45 & 0.145 & 0.415 & 0.451 & 0.045
\end{array}
$$

5 Complete this table. Write the missing fractions and decimals.

	Fraction	Decimal
a	$\frac{1}{2}$	0.5
b	$\frac{3}{4}$	
c		0.1
d	$\frac{9}{100}$	0.30
e		
f	$\frac{250}{1000}$	0.405
g	$\frac{99}{1000}$	
h		

Remember, the first decimal column is for tenths, the second is for hundredths and the third is for thousandths.

6 Change these improper fractions to mixed numbers and then to decimals.

	Improper fraction	Mixed number	Decimal
a	$\frac{5}{4}$	$1 \frac{1}{4}$	1.25
b	$\frac{7}{4}$		
c	$\frac{13}{10}$	$\frac{125}{100}$	$\frac{450}{100}$
d	$\frac{275}{100}$		
e	$\frac{1250}{1000}$		
f			
b			

Extended practice

1 Some common fractions look just as simple when they are expressed as a decimal. Convert these fractions to decimals, and the decimals to fractions.
a $\frac{1}{10}=$ \qquad
b $\frac{1}{4}=$ \qquad
c $\frac{7}{10}=$ \qquad
d $\quad 0.01=$ \qquad
e $0.75=$ \qquad f $\quad 0.001=$ \qquad

2 To change a fraction to a decimal, divide the numerator by the denominator.
$2 \longdiv { 0 . 5 }$
Change these to decimals.
a $\frac{1}{5}$
b $\quad \frac{1}{8}$
C $\frac{3}{4}$
d $\quad \frac{3}{8}$
e $\frac{4}{5}$
f $\quad \frac{7}{8}$

3 Another common fraction is $\frac{1}{3}$, but it doesn't look simple when it is expressed as a decimal. Find the decimal equivalent of $\frac{1}{3}$ by writing an algorithm or using a calculator.

4 Decimals in which a number is repeated over and over are called recurring decimals. To show the recurring number in a decimal, you can place a dot (like a full stop) over the top of the number that recurs. Find the decimal equivalent of $\frac{1}{6}$, then place a dot over the recurring number. \square

5 Some fractions convert to a very long decimal. Find the decimal equivalent of $\frac{1}{7}$, then round it to an appropriate number of places. \square

UNIT 2: TOPIC 4

Addition and subtraction of decimails

You can add or subtract decimals just like you do with whole numbers:

3	1	4
+	7	3
4	8	7

Guided practice

1 Find the answers.
a

2	5	3	7
+	1	6	2

b

But if there is a different number of columns, it is important to line up the numbers according to their place value:

	2	3	1	7
+		5	9	7
2	9	1	4	

2
$+\quad 5 \cdot 1$
$+\quad 9 \cdot 7$
8

The decimal point doesn't make much difference to the way you work, but it makes a BIG difference to the answer.

2 Use place value to line up the numbers and calculate the answers.
a $\quad 32.8+12.4$

d $\quad 75.9-23.6$

e $4.45-2.7$

c $\quad 24.74+4.38$

f $\quad 36.25-9.28$

Independent practice

1 Calculate the answers.

a	$2 \cdot 5$	4	
	+	$3 \cdot 4$	8
		\bullet	

g $\quad 7.45-5.24$
h $\quad 42.7-32.8$
46.7-29.285

2) a Add $\$ 23.79$ and $\$ 147.35$.
\square

3 a Find the total of 2.54 m , 17.7 m and 34.67 m .
\square
b Subtract \$119.95 from \$200.

b By how much is 3.463 kg less than $5 \frac{3}{4} \mathrm{~kg}$?
\square

4 Sam can run two 50-metre laps of the school athletic track in less than 18 seconds. What is the most likely time for each lap?
\qquad

5 Bill is building a fence that is 73.17 m long. He has already finished thirty-nine and a quarter metres of it. How much more does he need to build?

Working-out space

6 Find the total mass of a parcel that has four items that weigh:
$4.45 \mathrm{~kg}, 3.325 \mathrm{~kg}, 1 \frac{1}{2} \mathrm{~kg}, 725 \mathrm{~g}$

Working-out space

7. A roll of cloth is 14.36 m long. How much is left after $5 \frac{3}{4}$ metres have been cut from the roll?

Working-out space

Extended practice

1 The answer to this equation is 9.18. Try to find at least two ways of filling the gaps to complete the equation.
a
\square $+4$ \square $36=9.18$
a 0 $2+\square$.
b \square +4 . \square $36=9.18$

Working-out space

Working-out space

2 Did you know that your skin weighs almost as much as your bones? This table lists the mass of the eight largest organs in an adult who weighs 68 kg .

Organ	Mass	Organ	Mass	
heart	0.315 kg			
lungs	1.09 kg			
skin	10.886 kg			
pancreas	0.098 kg			
brain	1.408 kg			
spleen	0.17 kg			
liver	1.56 kg			
kidneys	0.29 kg			

b Find the total mass of the heart and lungs.
c How much heavier is the skin than the brain?
d The mass of which organ is closest to the mass of the kidneys? \qquad
e The right lung is 0.07 kg heavier than the left lung (to make space for the heart). What might the two masses be?
f What is the difference between the mass of the lungs
and the mass of the pancreas?
a Rewrite the table, listing the organs from heaviest to lightest.
\qquad
\qquad
g The mass of an adult male gorilla is about 240 kg , but his brain weighs only 0.465 kg . How much heavier is a human brain than a gorilla's brain? \qquad

UNIT 2: TOPIC 5

Multiplication and division of decimals

You can multiply decimals in the same way that you multiply whole numbers:

Multiplying a whole number by 4

Extended	
	2
\mathbf{x}	4
	4
+	8
	6
9	6

Short

Multiplying a decimal by 4

Guided practice

$2 a$

3 a

b

4 a

b

Dividing a whole number by 3 and a decimal by 3 :
$3 \longdiv { 2 4 9 } \rightarrow 3 \longdiv { 2 4 . 3 }$
5 a
$3 \longdiv { 5 1 6 }$ b
b $3 \longdiv { 5 1 . 6 }$
6
a
$5 \longdiv { 8 5 5 }$
b
$5 \longdiv { 8 5 . 5 }$
7
a $7 \longdiv { 5 7 4 }$ b $7 \longdiv { 5 7 . 4 }$
8
a
$4 \longdiv { 8 1 6 }$
b
$4 \longdiv { 8 1 . 6 }$

Independent practice

Remember to put the decimal point in the correctplace!

1	a	1	$4 \cdot 7$
\mathbf{x}		3	
		\bullet	

d

g

j

2) a $3 \longdiv { 1 5 . 9 }$
d $5 \longdiv { 9 7 . 5 }$
e $5 \longdiv { 5 . 2 5 }$
$f 4 \longdiv { 9 . 4 8 }$
$g \quad 2 \longdiv { 6 . 3 8 }$
h $7 \longdiv { 8 4 . 7 }$
i $4 \longdiv { 5 7 . 5 2 }$
j $3 \longdiv { 3 7 . 4 1 }$
b $6 \longdiv { 7 2 . 6 }$
c $4 \longdiv { 4 9 . 6 }$
g

k $8 \longdiv { 2 0 . 5 6 }$
$4 \longdiv { 5 7 . 5 2 }$
$9 \longdiv { 4 . 7 4 3 }$

k

3 Multiply:

4 Often items are sold at a price that is impossible to pay with an exact number of coins. If you saw pens at $\$ 1.99$ each, how much would you actually pay for:
a $\quad 1$ pen? \qquad b 2 pens?
c $\quad 4$ pens? \qquad d $\quad 10$ pens?
\qquad

5 Find the cost of each item in these packs. Round each answer to an appropriate amount of money.
a Two toys for $\$ 1.99$
b Five party hats for $\$ 7.99$ \qquad
c \quad Three prizes for $\$ 8.99$ \qquad
d Four drinks for $\$ 4.99$

Extended practice

1 Pete's Pizza Place gets an order for eight ordinary pizzas at $\$ 8.95$ each and one pizza supreme at $\$ 12.95$. What is the total cost?

2 A 5.4 m length of wood is cut into nine equal pieces. How long is each piece? \square

3 Eight people share a prize of $\$ 500$. How much does each person receive?

4 Here is a list of items bought for a party for a group of six students:

Item	Unit cost	Number required	Cost
Soft drink $(1.25 \mathrm{~L})$	$\$ 2.25$	half a bottle for each student	
Juice $(300 \mathrm{~mL})$	$\$ 0.84$	one for each student	
Potato crisps $(50 \mathrm{~g})$	$\$ 1.35$	two for each student	
Chocolate $(150 \mathrm{~g})$	$\$ 4.93$	two packets	
Melon	$\$ 3.84$	one between the group	
Pies (4 in a pack)	$\$ 8.04$	one pie for each student	

a Fill in the cost column for each row. Consider whether you will need to round the amounts of money.
b What is the cost of all the items for the group? \qquad
c How much per person does it cost for the melon? \qquad
d What is the total cost for each of the six students? \qquad
e There are four groups of six in the class. What is the cost for the whole class?

Working-out space

UNIT 2: TOPIC 6
 Decimals and powers of 10

Multiplying a decimal by 10 is almost the same as multiplying a whole number by 10 : everything moves one place bigger.

BIFF!

The difference is the zero.
You have to decide whether it is needed.

34.0 has the same value as 34 ,
so you can write $3.4 \times 10=34$

Guided practice

5) a $350 \div 10=$
b) $35 \div 10=$
7) a $870 \div 10=$ \qquad
b $\quad 87 \div 10=$ \qquad
6) a $740 \div 10=$ \qquad
b) $74 \div 10=$ \qquad
8 a $930 \div 10=$ \qquad
b $93 \div 10=$ \qquad

9 a 32.6×10 \qquad b $\quad 2.35 \times 10$
d $\quad 65.2 \times 10$
c $\quad 7.892 \times 10$ \qquad
\qquad
10 a $23.5 \div 10$ \qquad b $\quad 42.75 \div 10$
c $3.5 \div 10$
d $0.2 \div 10$
\qquad

Independent practice

Multiplying by 100 moves each digit two places larger:

T	$0 \cdot \frac{1}{10}$	
		$9 \cdot 5$
	9	$5 \cdot 0$

$=9$
$5 \cdot 0$

$B_{\text {IFI }}$

Solve these multiplication problems.
(1) a $3.5 \times 10=$
2
$6.7 \times 10=$
b $3.5 \times 100=$ \qquad
(3) a $5.38 \times 10=$ \qquad
(4) a $4.09 \times 10=$
\qquad
b $\quad 5.38 \times 100=$ \qquad
b $4.09 \times 100=$ \qquad

Dividing by 100 moves each digit two places smaller:

BIFFI \quad| | $0 \cdot \frac{1}{10}$ |
| ---: | ---: |
| $=$ | $9 \cdot 5$ |$\div 10$

BIFF!

Solve these division problems.
5) a $4.5 \div 10=$ \qquad (6) a $7.9 \div 10=$
b) $7.9 \div 100=$ \qquad
b $4.5 \div 100=$ \qquad
(7) a $54.5 \div 10=$ \qquad
b $54.5 \div 100=$ \qquad
8 a $62.7 \div 10=$
\qquad
b $\quad 62.7 \div 100=$ \qquad
\qquad

Multiplying or dividing by 1000 moves the digits over three places.

Dividing by 1000

(11) Multiply by 1000.

Tth	Th	H	T	O	$\frac{1}{10}$
	1			\bullet	
				\bullet	
				•	
				\bullet	
				\bullet	
				\bullet	

12

	e by 1000.	H	T	0	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
a	432			0	-		
b	529				-		
c	841				-		
d	697				\bullet		
e	1485				-		
f	3028				-		
g	10436				-		
h	99999				-		

Extended practice

1 One of these processes will give the correct answer to 2.25×0.4. Which one is it?
$225 \times 4 \times 100$
$2.25 \times 4 \div 100$
$225 \times 4 \div 1000$$2.25 \times 4 \div 1000$

2 Use what you found out in question 1 to find the answer to these problems.
a $\quad 3.12 \times 0.3$ \qquad b $\quad 31.2 \times 0.3$
c $\quad 20.3 \times 0.03$ \qquad d $\quad 40.02 \times 0.2$
\qquad

3 How many jumps of 0.2 on a number line would take you from 0 to 500? \qquad

4 A fast food store has a 150-litre barrel of juice. How many cups can be filled if the cup sizes are:
a $\quad 0.25 \mathrm{~L}$? \qquad c $\quad 0.15 \mathrm{~L}$?
b 0.2 L ? \qquad d $\quad 600 \mathrm{~mL}$?
\qquad

5 A shop paid $\$ 132948$ for 1000 watches.
a What was the average price of each watch?
b One-tenth of the total price was for insurance. What was the insurance charge?
c One watch was worth one-hundredth of the total price. How much was that watch?

Working-out space

UNIT 2: TOPIC 7
 Percentage, fractions and decimals

The symbol \% stands for per cent. It means out of a hundred. So 1% means 1 out of 100 . It can be written as:

- a fraction: $\frac{1}{100}$
- a decimal: 0.01
- a percentage: 1%

The amount shaded is:
$\frac{4}{100}$ (fraction) 0.04 (decimal) 4\% (percentage)

Guided practice

1 Write a fraction, decimal and percentage for each shaded part.

2 Shade the grid and fill the gaps.
a

Fraction
$\frac{2}{100}$
Decimal
Percentage

b

c

Fraction
Decimal
Percentage
35%

d

Independent practice

1 Complete this table.

	Fraction	Decimal	Percentage
a	$\frac{15}{100}$		
b		0.22	
c			60%
d		0.09	
e	$\frac{9}{10}$		
f			
g			
h	$\frac{1}{4}$	0.5	
i			
j			
k	$\frac{1}{5}$		

2 Write True or False.
a $30 \%=0.3$
b $\quad 0.04<40 \%$
c $\quad 0.12>\frac{12}{100}$
d $25 \%=\frac{1}{4}$
e $\frac{3}{4}<75 \%$
f $0.9=9 \%$
g $\frac{2}{10}>20 \%$
h $\quad 95 \%=0.95$
i $100 \%=1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 Order these from smallest to largest.
a $0.3 \quad 20 \% \quad \frac{1}{4}$ \qquad b $0.07 \quad 69 \% \quad \frac{6}{10}$
c $\quad 17 \% \quad 0.2 \quad \frac{2}{100}$ \qquad
d $\quad \frac{1}{4} \quad 4 \% \quad 0.14$
e $10 \% \quad \frac{1}{5} \quad 0.5$
f $\quad 39 \% \quad 0.395 \quad \frac{3}{10}$

4 Find the matching fractions, decimals and percentages.
Choose colours to lightly shade each matching set of three.

$-\frac{8}{100}$	50%	0.5	$\frac{2}{100}$

0.8 2%
$\frac{1}{2}$
0.08
80\%

5 Fill in the blanks on this number line.

6 Circle the percentage that matches the position of each shape.

a	Diamond:	5%	15%	50%
b	Star:	15%	20%	22%
c	Triangle:	40%	44%	49%
d	Circle:	59%	55%	51%
e	Hexagon:	70%	72%	75%
f	Oval:	99%	100%	90%

7 Draw a smiley face and an arrow 85% of the way along the number line in question 6 .

8 The square is 10% of the way along this number line. To the nearest 10%, what is the position of:

a the triangle? \qquad b the star?
c the circle? \qquad d the hexagon?

Extended practice

Read the information about Australia. Then write your answers in complete sentences and you will have six facts about Australia. You might need to use spare paper for your working out.
(1) In Australia, there are around 28 million cattle. That is about $\frac{1}{50}$ of all the cattle in the world. What percentage of the world's cattle is in Australia? \qquad
\qquad

2 There are 378 mammal species in Australia.
80% of them are found nowhere else in the world.
Change 80\% to a fraction and write it in its simplest form.

3 Around 25\% of the people in Australia live in Victoria. Australia's population reached 22 million people in 2009. What was the approximate population of Victoria in 2009?

4 Australia has 79 million sheep. This is $\frac{3}{20}$ of the number of sheep in the world's Top 10 sheep countries. What percentage of the sheep

Australia sounds like an interesting place. I might move there! in the Top 10 countries are in Australia?

5 Some people think Australia is mainly desert. In fact, the Great Sandy Desert only covers about 5\% of Australia. Write the fraction (in its simplest form) of Australia that is covered by the Great Sandy Desert.

6 Australia has 749 out of 5594 of the world's threatened animal species. Circle one answer. The percentage of the world's threatened animal species that are in Australia is about:

- 1%.
- 3%.
- 8%.
- 13%.

UNIT 3: TOPIC 1

Ratios

Ratios are used to compare numbers or quantities to each other.
In the example below, there are 6 smiley faces and 4 sad faces.

The ratio of smiley faces to sad faces is 6 to 4 . This is written as 6:4.

Guided practice

1 Write the ratio of smiley faces to sad faces.

		Ratio of smiley faces to sad faces
	$(\because)(\because)(\because)(\because)(\because)$	6:4
a	$\because(\because(\because)(\because)(\because()(\because)$	
b	(ே) $\because(\because)(\because)(\because(\because)$	
C		

2 In the first example, the ratio of 6:4 can be simplified. The simplest form of the ratio is $3: 2$ because there are 3 smiley faces for every 2 sad faces. Write the ratio of smiley faces to sad faces below in its simplest form.

		Ratio in its simplest form
		3:2
a		
b	(O) $\because(\ddots) \because(\ddots)(\because)$	
c		
d	$(\because(\because)(\because)(\because)(\because)$	
e		
f		
g		

Finding the simplestratio is like finding the lowest equivalent form in fractions.

Independent practice

1 In a pack of pink and purple jellybeans, the ratio of pink to purple is $2: 3$. This means that there are 2 pink jellybeans for every 3 purple jellybeans.
If there are 8 pink jellybeans in total, we can use the ratio of $2: 3$ to work out the number of purple ones. Drawing the jellybeans can also help.

Use the ratio of 2:3 to work out the number of purple jellybeans in a jar if there are:
a 6 pink. \qquad b 10 pink. \qquad c 16 pink. \qquad

2 Use the ratio of 2:3 to work out the number of pink jellybeans in a jar if there are:
a 6 purple. \qquad b 10 purple. \qquad c 16 purple.
\qquad

3 Ratios can compare more than two numbers. For every blue square in this pattern, there are 2 yellow squares and 3 green squares. The ratio is 1:2:3.

What is the ratio (in its simplest form) of blue to yellow to green squares below?

4 Colour the grid so that the ratio is 3 blue squares to 1 yellow square to 2 green squares (3:1:2).

5 Look at this bead pattern.

Describe the bead pattern:
a in words. \qquad
b as a ratio. \qquad
6. There are 24 beads in this necklace. Choose a ratio to make a pattern using the colours red, green and blue.

00000000000000000000000

Describe the bead pattern:
a in words. \qquad
b as a ratio. \qquad

7 To make 8 pancakes, Joe uses 120 g of flour, 250 mL of milk and 1 egg.
Using ratio, complete the table to help Joe work out the different quantities.

Flour	Milk	Eggs	Number of pancakes
120 g	250 mL	1	8
240 g			
		4	
	1.5 L		
			4

8 Kate has 18 sheep, 48 goats, 6 horses and 12 ducks.
a In its simplest form, write the ratio of Kate's sheep to the goats, horses and ducks.
b Zoe has the same types of animals as Kate, and in the same ratio, but she only has 4 ducks. How many of each of the other animals does Zoe have?

Extended practice

Proportion

Proportion is different to ratio. It compares one number to the whole group.
1 The ratio of strawberries to bananas is 1:3.

To find the proportion of strawberries, we look at the total number of fruit (8). Next, we look at the number of fruit that are strawberries (2).
The fraction of the group that are strawberries is $\frac{2}{8}$, which can be simplified to $\frac{1}{4}$.
So the proportion of strawberries is $\frac{1}{4}$.
The proportion can also be written as a percentage (25\%) or a decimal (0.25).
Write the proportion of bananas as:
a a fraction. \qquad b a percentage. \qquad c a decimal.
\qquad -

2 In a box of 20, the ratio of oranges to apples is 1:4. We can use ratio and proportion to work out the number of oranges and apples.
Add 1 orange and 4 apples: $1+4=5$. This means there are 5 "portions".
Proportion of oranges: $\frac{1}{5}$ Proportion of apples: $\frac{4}{5}$
One-fifth of 20 is 4 , so there are 4 oranges.
Four-fifths of 20 is 4 lots of 4 , so there are 16 apples.
How many oranges and apples are in each box if the total number is:
a 10 ?
b 25?
c 50?
d 35?

Oranges: \qquad Oranges: \qquad Oranges: \qquad Oranges: \qquad
Apples: \qquad Apples: \qquad Apples: \qquad Apples: \qquad

3 Use the information to work out the number of oranges and apples in each box.
a
Apples: \qquad
b

d

Apples: \qquad

UMHL 4: TOPIC 1
 Geometric and number potterns

Patterns are all around us. There is a pattern in the way these craft sticks are placed.

We could describe the pattern like this:
For every pentagon you use 5 sticks.

Guided practice

1 Fill the gaps in this table.

	Pattern	Rule	How many sticks are used
\mathbf{a}		For every pentagon you need___ sticks	$4 \times \square=\square$
\mathbf{b}		For every diamond you need___sticks	$\square \times \square=\square$

2 Complete this table and write a rule for the pattern.

Position	1	2	3	4	5	6	7	8	9
Number	10	9.5	9	8.5					

Rule:

3 We can also use a flowchart to show a mathematics rule.
Use this flowchart to find whether these numbers are divisible by 4 .
a 124 \qquad
b $\quad 516$ \qquad
\qquad
4442
 - $\quad \begin{aligned} & \text { Is there a } \\ & \text { remainder? }\end{aligned}$
 is not divisible by 4 .

4 What question should be written in the diamond in this flowchart?

Independent practice

1 This pattern could not be described by the rule that you use four sticks for every square. Why not?

\qquad

To describe the pattern above, you need to look how it was made:

You start with one stick, then use 3 sticks for every square.
How many sticks were used for the three squares? $1+3 \times 3=1+9=10$

2 Complete this table.

3 True or false? Both rules describe the pattern.

- Start with one stick and then use two sticks for every triangle.
- Use three sticks for the first triangle and then two for every other triangle.

Try to make the rules easy to understand.

4 Write a simple rule for each pattern.
\qquad
Pattern \quad Rule
aces:

5 Read the rule to complete each table.
Multiply the position number by 3 and then subtract 1 .

Position	1	2	3	4	5	6	7	8	9	10
Number	2									

6 Complete the table and write a rule for this number pattern.

Position	1	2	3	4	5	6	7	8	9	10
Number	1	4	9	16						

7 This flow chart shows the steps for doing a whole number division algorithm.

The dividend is

the number that is
being divided.

> The divisor is the number you are dividing by.

The quotient is the wholenumber answer when a number has been divided.

Follow the flow chart to complete these algorithms.
a

$$
3 \longdiv { 3 4 4 }
$$

b
$4 \longdiv { 5 4 8 }$
c
$3 \longdiv { 2 5 9 }$

8 To know if a number is divisible by 3, you add the digits together. If the answer is divisible by 3 , then the whole number is divisible by 3 . On a separate piece of paper, design a flow chart that shows the steps to find out whether a number is divisible by 3 . Test it yourself before giving it to somebody to use.

Extended practice

Imagine you are planning a sit-down party. How will the tables be arranged?
For all the following activities:

- only one person can sit along one side of a table
- use the abbreviation n for the number of people and t for the number of tables.

1 A common shape for a table is rectangular. If the tables are separate, the formula for the number of people that can be seated is $n=t \times 4$.
Using this formula, how many can be seated at:
a 8 tables?
b $\quad 10$ tables?
c $\quad 20$ tables?
d $\quad 50$ tables?

2 At parties, the tables are often joined end to end.

a How many people could sit at 4 tables arranged like this? \qquad
b Write a formula for the number of people who could sit at any number of tables arranged like this. \qquad
c Rewrite the number of people who could sit at the numbers of tables in question 1 .
a \square
b

c \square
d \square

3 If the tables were like this, how many people could sit at:

a $\quad 5$ tables? \qquad
b $\quad 7$ tables? \qquad
c $\quad 10$ tables? d 20 tables? \qquad

4 a Write a formula that would suit the seating arrangements in question 3.
b Using the seating plan in question 3, how many tables would be needed to seat a class of 24 students?

UNIT 4: TOPIC 2
 Order of operations

It doesn't matter which operation you do first in $2+5-3$. The answer is still 4 .

But sometimes the order of operations does matter.

What is

 three times five plus two?It's 17!
3×5 is 15
$15+2=17$

No, it's 21 !
$5+2$ is 7
$3 \times 7=21$

BODMAS is a way of knowing what to do first.

Hst	B	Brackets	$2 \times(3-1)=4$
and	O	Other operations	$4 \times 3^{2}=4 \times 9=36$
	$\frac{1}{2}$ of $10+4=5+4=9$		
ard	D	Divide	$10+6 \div 2=10+3=13$
	M	Multiply	$2 \times 3+2=6+2=8$
4th	A	Add	$4+2 \times 3=4+6=10$
	S	Subtract	$5 \times 4-3=20-3=17$

Guided practice

1 What is the correct answer to the question in the speech bubble above?
2) a $3+2 \times 2=3+4=$ \qquad b $(3+2) \times 2=$
c $6 \times 4-3=$ \qquad d $6 \times(4-3)=$
e $48 \div 8-2=$ \qquad f $48 \div(8-2)=$
g $8+12 \div 2=$ \qquad h $(8+12) \div 2=$
(3) a $\frac{1}{2}$ of $8 \times 3=4 \times 3=$ \qquad b $\quad \frac{1}{2}$ of $(8 \times 3)=$
c $\frac{1}{2}$ of $6+3=$ \qquad d $\quad \frac{1}{2}$ of $(6+3)=$
e $\quad 4^{2}+5=$ \qquad f $\quad 5^{2}+4=$
g $\quad 3 \times 2^{2}=$ \qquad h $(3 \times 2)^{2}=$

4 a $3 \times(10-5)=$ \qquad b $\frac{1}{4}$ of $20 \times 2=$
c $\quad 5+6 \div 2=$ \qquad d $\frac{1}{2}$ of $24 \div 6=$
e $\quad\left(7^{2}+1\right) \times 2=$ \qquad f $3 \times 12 \div 2=$
g $\frac{1}{2}$ of $10 \times 2^{2}=$ \qquad h $5+(10-5)^{2}=$

Independent practice

$5 \times 4=15+5$

An equation is a number sentence in two parts. The two parts balance each other.

1 Complete these equations.
a $\quad 5 \times 2=\square+8$
b $\quad \times 5=30-5$
c $\quad 24 \div 2=4 \times$
d $\quad+7=(4+5) \times 3$
e $\frac{1}{2}$ of $6+5=24 \div$ \qquad
2. You can use equations to make multiplication simpler.

Use equations to split the number you are multiplying.

	Problem		Split the problem to make it simpler		Solve the problem		Answer
	27×3	$=$	$(20 \times 3)+(7 \times 3)$	$=$	$60+21$	$=$	81
a	23×4	$=$	$(20 \times 4)+(3 \times 4)$	$=$		$=$	
b	19×7	$=$		$=$		$=$	
c	48×5	$=$		$=$		$=$	
d	37×6	$=$		$=$		$=$	
e	29×5	$=$		$=$		$=$	
f	43×7	$=$		$=$		$=$	
g	54×9	$=$		$=$		$=$	

3 Use equations to change the order of operations.

| | | Change the order
 to make it simpler | | Solve the problem |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Answer

You can use "opposites" to solve problems. To find the value of \diamond in the equation $\diamond+3=9$, move the +3 to the other side and do the opposite of plus. It becomes $\diamond=9-3$, so $\diamond=6$. You can check it by writing the equation: $6=9-3$

4 Rewrite each equation using "opposites" to find the value of \rangle.

	Problem	Use opposites	Find the value of \diamond	Check by writing the equation
e.g.	$\diamond+15=35$	$\diamond=35-15$	$\diamond=20$	$20=35-15$
a	$\diamond \times 6=54$	$\diamond=54 \div 6$		
b	$\diamond+1.5=6$			
c	$\frac{1}{4}$ of $\diamond=10$			
d	$\diamond \times 10=45$			
e	$\diamond \div 10=3.5$			
f	$\diamond \div 4=1.5$			
g	$\diamond \times 100=725$			

5 Another strategy to find the value of \diamond is to put a number in its place to see if it balances the equation. The number is a "substitute" for Δ. For example, $\rangle+4^{2}=18$. Substitute 2 for \diamond. Does $2+4^{2}=18$? Yes! So, $\diamond=2$.

Problem	Possible substitutes	Check

| e.g. | $\nabla^{2} \times 3=75$ | 4 | 5 | 6 | 7 |
| :--- | :--- | :---: | :---: | :---: | :---: | $5^{2} \times 3=25 \times 3=75$

Extended practice

A word puzzle can be made simpler by writing an equation. For example, guess my number: If you double it and add 3 the answer is 11 . We can use \diamond for the number and write an equation: $\diamond \times 2+3=11$. To solve the equation we can use "opposites": $\diamond \times 2=11-3$. So, $\diamond \times 2=8$. (Use "opposites" again.) $\diamond=8 \div 2=4$

1 Solve these puzzles by writing an equation.
a Guess my number. If you triple it and subtract 4, the answer is 11.
\qquad
b Guess my number. If you multiply it by 10 and subtract 15 , the answer is 19 .

2 Does your calculator use BODMAS? Use $1+2 \times 4$ to find out. Using BODMAS, the answer should be $1+8=9$. Now try it on a calculator. If it gives the answer as 12 , there is nothing wrong with the calculator, but think why it would do that.
a What is $10+2 \times 4-2$? \qquad
b What answer do you think a basic calculator will give?
c Try the problem on a calculator. What answer does it give? \qquad
d Investigate answers to the same number sentence by placing the brackets in different positions.

Number challenge

3 Using the digit " 4 " four times with any of the four operations, it is possible to come up with the answers $0,1,2,3,4,5,6,7,8$ or 9 . For example: $(4+4+4) \div 4=3$. Try to find the others. (There is more than one way of getting some of the answers.)

UNIT 5: TOPIC 1

Iength

Our everyday units of length are kilometres (km), metres (m), centimetres (cm) and millimetres (mm). We can convert between them like this:

Remember! Only use a zero

Guided practice

 when it is needed.2 Complete the table.

	Metres Centimetres	
e.g.	2 m	200 cm
a		100 cm
b	4 m	
c	5.5 m	
d		250 cm
e	7.1 m	
f		820 cm
g	1.56 m	
h		75 cm

3 Complete the table.

e.g.	2 cm	20 mm
a	5 cm	
b	42 cm	
c		90 mm
d	3.2 cm	
e		75 mm
f		125 mm
g	12.4 cm	
h		99 mm

4. Which unit of length would you use for these?
a The length of this page
b The height of your table
c The length of an ant
d The length of a school hall \qquad
e The height of a door
f The length of a marathon race

Independent practice

1 Match two lengths to each object.
157 m
1.57 m
1570 m
157 mm
1.57 km
1.5 cm

15 mm

Object	1st unit	2nd unit	
a	The length of a pencil		
b	The height of a Year 6 student		
c \quad The length of a finger nail			
d \quad The distance around a school yard			
e \quad The length of a bike ride			

2 Measure each line. Write each length in three ways.

3 Measure each object and its length in three ways.

								Object	mm	cm and mm	cm (with decimal)
a	A pencil sharpener										
b	Your pencil										
c	An eraser										
d	A glue stick										
e	The width of this page										

4. Line B is 8 cm long.

Line A

Line B
Line C
a Estimate the lengths of the other two lines. (Do not measure the lengths.) Line A estimate: \qquad -

Line C estimate: \qquad
b Measure Line A and Line C. Write the lengths.
Line A: \qquad Line C: \qquad

5 Line B here is 6 cm long.

Line A

Line C

a Estimate (do not measure) the lengths of Lines A and C.
Line A estimate: \qquad Line C estimate: \qquad
b Now measure Lines A and C.
Line A: \qquad Line C: \qquad
c How did the arrows affect your estimates?

6 Record the perimeter of each shape.

a \quad Perimeter $=$

b Perimeter $=$

Perimeter $=$

d \quad Perimeter $=$
\qquad

7 Write about any shortcuts you used in question 6.
\qquad
\qquad
\qquad

Extended practice

This is a list of estimated dinosaur lengths, measured from head to tail.
Not all dinosaurs were gigantic. In fact, the shortest dinosaur has the longest name!

Name	Length	Ranking (Longest to shortest)
Tyrannosaurus Rex	12.8 m	
Iguanodon	6800 mm	
Microraptor	0.83 m	
Homalocephale	290 cm	
Saltopus	590 mm	
Puertasaurus	3700 cm	
Dromiceiomimus	3500 mm	
Micropachycephalosaurus	50 cm	

1 Number the dinosaurs in order from longest to shortest.

2 Name a modern animal that is about the same length as the smallest dinosaur.

3 Which dinosaur was about ten times longer than a dromiceiomimus?

4 If the longest dinosaur was lying on the ground, about how many Year 6 students could lay next to it, head to toe?

5 What is the difference between your height and the length of a microraptor?

6 Draw a rectangle that has a perimeter of 68 mm .

UNIT 5: TOPIC 2

Area

Area is the surface of something. It is measured in squares. Depending on the size, we use square centimetres (cm^{2}), square metres $\left(\mathrm{m}^{2}\right)$, hectares (ha) or square kilometres $\left(\mathrm{km}^{2}\right)$.

Guided practice

1 This rectangle has one-centimetre squares drawn on it.

2 This rectangle has one-centimetre squares drawn on part of it.

The area is \qquad cm^{2}.

The area is \qquad cm^{2}.

3 This rectangle has marks every centimetre along two of the edges.

The area is \qquad cm^{2}.

4

a How many centimetre squares would fit on the bottom row? \square
b How many rows would there be? \square
c What is the area? \square

5 Write the area of each shape.
b
3 cm
c

Area $=$ \qquad Area $=$ \qquad Area $=$ \qquad

Independent practice

1 Find the length, width and area of each rectangle.

\square

Length \qquad cm
Width \qquad cm
Area \qquad cm^{2}
b

Length \qquad cm

Width \qquad cm

Area \qquad cm^{2}
2) These are the dimensions of three rooms. Calculate the area of each room.

It is not always possible to draw shapes to their true size - because they wouldn't fit on the page!

15 m

3 Scale is sometimes used in drawing plans. For these rooms, 1 cm on the plan represents 1 m in real life. Find the area of each room.
a

c
Area $=$ \qquad

4 To find the area of a rectangle, you can use this formula:
\mathbf{A} (area) $=\mathbf{L}$ (length) $\times \mathbf{W}$ (width) .

Why won't the formula work for this shape? \qquad

5 Measure these shapes, then split them into rectangles to find the total area of each.

Area $=$ \qquad
b

c

Area $=$ \qquad Area $=$ \qquad Area $=$ \qquad

6 What is the area of a soccer field that is 100 m long by 50 m wide? \square
7) Two soccer fields side by side have an area of one hectare (ha). (1 ha $=10000 \mathrm{~m}^{2}$.) How many square metres are there in:
a 2 ha? \qquad b 4 ha? \qquad c $\quad 5 \mathrm{ha}$? \qquad

8 An A4 page is $297 \mathrm{~mm} \times 210 \mathrm{~mm}$. Round to the nearest centimetre to find the approximate area of an A4 page.

Extended practice

To find the area of a triangle, imagine it as half of a rectangle. The area of triangle $A B C$ is half of rectangle $A B C D$. Half of $8 \mathrm{~cm}^{2}=4 \mathrm{~cm}^{2}$.

1 Record the area of each shape.
a Area of rectangle $\mathrm{ABCD}=$ Area of triangle $A B C=$ \qquad

c Area of rectangle $\mid J K L=$ \qquad
Area of triangle $\mathrm{JKL}=$ \qquad

b Area of rectangle EFGH = \qquad
Area of triangle EFG = \qquad

d Area of rectangle $\mathrm{MNOP}=$ \qquad
Area of triangle $\mathrm{NOO}=$ \qquad

2 Record the area of each triangle.

Area of triangle $=$ \qquad Area of triangle $=$ \qquad Area of triangle $=$ \qquad

UNIT 5: TOPIC 3
 Volume and capacity

Volume is the space something takes up. It is measured in cubes. This centimetre cube model has a volume of 4 cubic centimetres ($4 \mathrm{~cm}^{3}$).

Guided practice

1 Write the volume of each centimetre cube model.

a \quad Volume $=$
$-\mathrm{cm}^{3}$

b \quad Volume $=$
\qquad cm^{3}

c \quad Volume $=$
\qquad cm^{3}

d \quad Volume $=$
\qquad cm^{3}

2 Fill in the gaps.

Capacity is the amount that can be poured into something.
We use litres (L) and millilitres (mL) to show capacity. Large capacities (such as swimming pools) are measured in kilolitres (kL). We can convert between them like this:

3 Complete these tables.

Independent practice

1 a How many centimetre cubes would you need to make this model?
b What is its volume?
\square

2. How do you know that the volume of this model is $12 \mathrm{~cm}^{3}$?
\qquad

3 Using \mathbf{V} for volume, \mathbf{L} for length, \mathbf{W} for width and \mathbf{H} for height, write a rule to tell someone how to find the volume of a rectangular prism.

4 Find the volume of each object.

Volume: \qquad cm^{3}
d

Volume: \qquad cm^{3}

Volume: \qquad cm^{3}
Volume: \qquad cm^{3}

Volume: \qquad cm^{3}
f

Volume: \qquad cm^{3}

5 Order these containers by capacity from smallest to largest.

\qquad
\qquad

6 Shade these jugs to show the level when the drinks have been poured in. Write the amount in millilitres (mL).
a 2 orange drinks

Amount: \qquad mL
d 1 cola drink

Amount: \qquad mL
b 2 apple drinks

Amount: \qquad mL
e 3 fruit juice drinks

Amount: \qquad mL
c 1 water and
1 orange drink

Amount: \qquad mL
f 1 apple and 1 water drink

Amount: \qquad mL

Extended practice

1 We would show the length and width of a driveway in metres, but how would we show its depth?
Would you use metres, centimetres or millimetres to show the depth of a driveway?
\qquad
Working-out space

2 Ready-mixed concrete is sold by the cubic metre. How much concrete should be ordered for a path that is 30 m long, 3 m wide and 15 cm deep?
\qquad

3 This activity is for finding the volume of a pebble. You will need: a pebble (or similar), a small container of water, a bowl in which to place the small container, and a measuring jug.

1 mL of water takes up the same space as $1 \mathrm{~cm}^{3}$.
a Place the smaller container into the bowl.
b Carefully fill the smaller container with water up to the brim.
c Gently place the pebble into the water.
d Carefully remove the smaller container from the bowl, making sure that no more water spills from it.
e Measure the amount of the water that spilled from the container when you placed the pebble into it.
f Think about the connection between the amount of water that spilled over and the volume of the pebble.
\qquad
Write a few sentences about what you did. Include a sentence
 that states the volume of the pebble. Also say how you know what the volume is. (You may need to work this out on a separate piece of paper.)
\qquad
\qquad
\qquad

UNIT 5: TOPIC 4

Mass

The mass of something tells us how heavy it is.
Our everyday units of mass are tonnes (t), kilograms (kg) and grams (g). For the mass of something very light, like a grain of salt, we use milligrams (mg). Each unit of mass is 1000 times lighter than the next (heavier) unit.

Guided practice

1

2 What is something that would have its mass shown in:
a tonnes?
b kilograms? \qquad
c grams?
d milligrams? \qquad

3 The mass of the box can be written as $1 \frac{1}{2} \mathrm{~kg}$, 1.5 kg or $1 \mathrm{~kg} \mathrm{500g}$. Complete the table.

	Kilograms and fractions	Kilograms and decimals	Kilograms and grams
a	$3 \frac{1}{2} \mathrm{~kg}$		$3 \mathrm{~kg} \mathrm{500g}$
b		2.5 kg	
c	$3 \frac{1}{4} \mathrm{~kg}$		
d			
e			1 kg 900 gg

Independent practice

1 We usually weigh heavier objects and lighter objects on different scales. Take note of the increments (markings) on each scale as you record the mass.

Mass: \qquad

B

Mass: \qquad

C

Mass: \qquad

2 Look at the scales in question 1. Which would you use if you needed to have:
a $\quad 200 \mathrm{~g}$ of flour? \qquad b $\quad 4 \frac{1}{2} \mathrm{~kg}$ of potatoes?
c $\quad 2 \frac{1}{4} \mathrm{~kg}$ of sand? \qquad d $\quad 750 \mathrm{~g}$ of apples?
\qquad
\qquad

Draw a pointer on the scale to show a box with a mass of 925 g .

4
2905 kg
B

a Order the trucks from lightest to heaviest load. \qquad
b Which two trucks are carrying a total mass closest to 5 t ? \qquad
c Which two trucks are carrying a total mass closest to 6 t? \qquad

5 Finding the mass of a single sheet of paper would be difficult. Explain how you could use the information on this note pad to work out the mass of one sheet.

6 Sam receives a parcel from his grandmother. The total mass of the parcel is 1.85 kg . Write a possible mass for each item in the box. Make sure the total is 1.85 kg .
Working-out space

Item	Mass	Which do you has
The packing box		great mass?
Pen set		
Shoes		
Set of postage stamps		
Pair of socks		

7 Each lift has a sign that shows the mass it can carry safely. Answer the following questions. Show your working out.
a What does the lift company think is the average mass of a person?

b If the average mass of a Year 6 student is 40 kg , how many Year 6 students could the lift carry? \square

8 In a 1-kg tray of four mangoes, none of them has the same mass. What might be the mass of each mango?
\qquad
\qquad
Working-out space

Extended practice

1 Scientists have shown that 1 mL of water has a mass of exactly 1 g . Could you prove that 1 mL of water has a mass of 1 g ? In everyday life, it is very difficult to be accurate when weighing objects as light as one gram. Using a balance, try to prove that 50 mL of water has a mass of 50 g . Write a sentence or two about your findings.

2 Sodium is part of salt, and we should not each too much of it.
This information shows the amount of sodium in some common foods.

Type of food	Milligrams of sodium per 100 g	Normal serving size (g)	Milligrams of sodium per serve
Potato crisps	1000 mg	50 g	500 mg
Hamburger	440 mg	200 g	880 mg
Beef sausage	790 mg	70 g	553 mg
Chicken breast	43 mg	160 g	69 mg
Breakfast cereal	480 mg	30 g	144 mg
Butter	780 mg	7 g	55 mg
Yeast spread	3000 mg	6 g	180 mg
White bread	450 mg	$30 \mathrm{~g} \mathrm{(1} \mathrm{slice)}$	135 mg

We are not supposed to have more than about 2.3 g of sodium per day.
a Which type of food has 1 g sodium for every 100 g serving?
b What is the difference between the amount of sodium in 100 g of hamburger and 100 g of breakfast cereal?
c Look at the normal serving sizes. How much sodium would Pete have if he ate a sandwich of two slices of white bread, yeast spread and butter?
d If Helen were to eat one serving of each type of food in a day, by how much would she be over the recommended daily amount of sodium?

UNIT 5: TOPIC 5

Timetables and timelines

A timetable is an easy-to-read list of what is going to happen. A timeline shows the order of things that have happened over a period of time.

Guided practice

1 Fill in the missing times.

a

In the evening
b

am/pm time 5:16 am

24-hour time
0516

> Timetables use either 12-hour time or 24 -hour time.

e.g.	$\begin{array}{ccc} E_{10} & 12 & 1 \\ =9 & & 3 \\ =8 & 4 & 3 \\ 5 & 6 & 5 \end{array}$	a		b	
am/pm time	5:16 am				
24-hour time	0516				
c		d	Late at night	e	$\begin{array}{ccc} 510 & 12 \\ =9 & & 3 \\ 8 & & 4 \\ 7 & 6 & 5 \end{array}$
am/pm time	2:42 am				
24-hour time					2222
f	In the morning	g	$\begin{array}{lll} 810 & 12 & 2 \\ 0 & \bullet & 3 \\ 8 & & 4 \\ 8 & 7 & 5 \end{array}$	h	$\begin{array}{ccc} 810 & 12 & 2 \\ =9 & \bullet & 3 \\ 8 & & 4 \\ 7 & 6 & 5 \end{array}$
am/pm time			10:35 am		
24-hour time	-				2359

Independent practice

1 How long does it take for Train 8219 to get from Melbourne to Geelong?

2 Which train takes the shortest time to get from Melbourne to Geelong?

3 What is the difference between the times of the shortest and longest journeys from Melbourne to Geelong?

4 On which train is it possible to buy a drink?

SATURDAY					
SERVICE NO.	8215	8219	8221	8225	8227
Train/Coach	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
Seating/Catering	\star 묘				
MELBOURNE	IC				
(Southern Cross) dep.	13:00	14:00	15:00	16:00	
North Melbourne					
Footscray	13:08u	14:08u	15:08u	16:08u	
Newport					
WERRIBEE		14:26u		16:26u	
Little River		14:34		16:34	
Lara	13:42	14:40	15:35	16:40	
Corio		14:44		16:44	
North Shore		14:46		16:46	
North Geelong	13:50	14:50	15:43	16:50	
GEELONG arr.	13:56	14:54	15:4?	16:54	
Legend First Class available. 도 Catering available. arr. - Arrive. dep. - Depart. u - Stops to pick up passengers only. IC - Inter-City. W - To Warrnambool. Peak service. Reservation required on these services.					

5 Why could you not travel from Southern Cross Station to Footscray on any of the trains?
6. If you were going to Geelong on Train 8219 and wanted get off in Lara to meet a friend, how long would you have to wait for the next train? \qquad

7 Train 8227 leaves Southern Cross at 4:30 pm. It has the same travelling time and stops as Train 8225. Fill in the blanks on the timetable. Use 24 -hour time.

8 Use the information about space travel to complete the timeline. Make sure to take note of the scale, write the year for each mark on the scale, and draw the arrows to the appropriate places on the timeline.

Information

 about space travel1957 1960
1961
1965
1969
1981
1986
1989
1997

Sputnik 1 - first spacecraft to orbit the Earth First animals went into space and returned First human went into space First spacewalk
First person on the Moon First space shuttle launched
Space shuttle Challenger exploded
First space probe to Neptune First operational rover on another planet (Mars)

A timeline of space exploration

9 According to the timeline, in which year did the first spacecraft land on Mars?

Which do you find easier to understand: the list of events or the timeline? Why?

Extended practice

1 There are three buses a day from Small Town to Big Town.

	Departs Small Town	Arrives Big Town
Bus A	0752	1043
Bus B	1114	1408
Bus C	1526	1829

a About how many hours does the bus take to get from Small Town to Big Town?
b How long is the journey on Bus A?
c How much longer is the journey on Bus C than Bus B?
\square
\square
\square

2 Look at the timetable in question 1.

a Write the departure time for Bus C in am/pm time. \square
b Draw the time on the analogue clock.
c If you took Bus B to Big Town and the person meeting you did not arrive until 2:30 pm, how long would you have to wait?

3 Each bus waits at Big Town for 85 minutes before starting the return journey. Each return journey takes 2 hours and 59 minutes. Complete the timetable for the journeys from Big Town to Small Town using 24-hour time.

	Departs Big Town	Arrives Small Town
Bus A		
Bus B		
Bus C		

UNIT 6: TOPIC 1

2D shapes

A polygon is a 2D shape with straight sides. Regular polygons have sides and angles that are the same size. Irregular polygons do not.

Is a circle a polygon?

Guided practice

1 Name these shapes and label them as either regular or irregular.

2 Circle the sentence that best describes this polygon.

- It has five sides.
- It has five angles that are the same size.
- It has five equal sides and some of the angles are the same size.
- It has five equal sides and five angles that are the same size.
- It has five equal sides but no angles that are the same size.

Independent practice

1 Write the type of triangle and two of its properties.

Triangle | Scalene. The sides are different lengths. |
| :--- | :--- | :--- | :--- |
| It has an obtuse angle. |

2 Identify and describe each shape.

	Ouadrilateral	Special name	Description
		Irregular quadrilateral	The four sides are all different lengths. The angles are different sizes. It has a reflex angle.
a			
b			
C			
d			
e			

3 Write about the similarities and differences between each pair of shapes.

Shapes	Similarities The angles in both triangles are acute. Each triangle has at least two angles that are the same size.	One triangle has two sides that are the same length. The other has all three sides the same length.

a			
b			
c			
d			
e			
f			
g	\square		
h			
i			
j			
k			

Extended practice

1 Fill the gaps. The arrow is pointing to a:
a \qquad

b

C

2 Fill the gaps. The shaded part is a:
a

b

c

3 Draw a circle with a diameter of 12 cm inside the square. Use the dot (A) as the centre of the circle.
\square 4 Draw the diagonals on the square.
How many
triangles are there?

UNIT 6: TOPIC 2

3D shapes

A pyramid has one base. The shape of the base gives the pyramid its name.
A prism has two bases (ends).
The shape of the bases gives the prism its name.

Guided practice

1 Use the shapes of the bases to identify these 3D shapes.
a

b

c

d

e

f

g

h

Independent practice

1 These are the nets for which 3D shapes?

A

B

\mathbf{A}									
\cdots									

It's OK to make mistakes. It means you're learning!

3 Practise drawing these 3D shapes.

Extended practice

1 Euler's law says that if you add the number of faces and vertices on a 3D shape, then take away the number of edges, the answer is always 2 . Test the law on these objects.

Object	Name	Number	Number	Number	Does Euler's
of faces	of vertices	of edges	Law work?		

a

Rectangular prism

6
8
12
Yes

UNIT 7: TOPIC 1

Angles

An angle has two arms and a vertex. A protractor is used to measure angles. The unit of measurement is called a degree $\left({ }^{\circ}\right)$.

right angle 90°

reflex angle $>180^{\circ}$ and less than 360°

acute angle $<90^{\circ}$

obtuse angle $>90^{\circ}$ and less than 180°

Guided practice

1 Write the size and type of each angle.

Remember!
(2) Draw angles of 25° from the dot on each base line.

Always put the base line of the protractor on the base line of the angle.

Independent practice

1 Write the size of each angle inside the arc.

2. How do you know the size of the reflex angle is 320° ?
\qquad

3 Write the size of each reflex angle.

4 Calculate the size of each unknown angle and a revolution is 360°. without using a protractor.
e.g. ? $=100^{\circ}$
a $\quad ?=$ \qquad b $\quad ?=$ \qquad
(180 - 80)

C $\quad ?=$ \qquad
d $?=$ \qquad
e \quad ? $=$ \qquad

f $\quad ?=$ \qquad

g ? = \qquad

h ? = \qquad

ii $\quad ?=$
\qquad

$$
\text { j } \quad ?=
$$

Extended practice

1 Calculate the sizes of the angles.
a

b $\quad \mathrm{a}=$ \qquad
$\mathrm{b}=$ \qquad
$c=$ \qquad
c $\quad \mathrm{a}=$ \qquad
$b=$ \qquad
$\mathrm{C}=$ \qquad
$\hat{b}^{48 \circ}$
d $\quad a=$ \qquad

2 From the information shown, calculate the sizes of the marked angles.

$\mathrm{a}=142^{\circ}$
b = \qquad
c = \qquad
d $=$
e = \qquad
f = \qquad
g = \qquad
h = \qquad
i = \qquad
j = \qquad
k = \qquad
| = \qquad
$\mathrm{m}=$ \qquad
n = \qquad
0 = \qquad
p = \qquad

3 Use the base line to
draw a parallelogram.
The second arm of the
angle at Point A is 75°
up from line $A B$. It is
5 cm long.

B

UNIT 8: TOPIC 1

Transformations

Patterns can be made by transforming a shape. This could be by:

Translation (sliding it)

Rotation (turning it)

Reflection (flipping it over)

Guided practice

1 What method of transformation has been used?

Transforming is another word for changing.

a

b

C

2 a Reflect the triangle.

b Rotate the pentagon.

c Translate the parallelogram.

Independent practice

Patterns can be made by transforming shapes horizontally or vertically.

Horizontal translation

Vertical translation

Horizontal reflection

Vertical reflection

1 Describe the patterns.
Pattern

2 Continue the pattern and describe the way it grows.

3 Complete and describe these patterns. (There is no need to include the colours in your description.)
a

b

c

\qquad
\qquad

4 Design a transformation pattern. Use this shape or make up one of your own.

Extended practice

1

For these activities you will need a computer with Microsoft Word, or similar.
a Choose an object that you find interesting. Place it on the page and fill it with the colour of your choice.
b Copy and paste the object on the same point and rotate it through an angle (say, 30).
c Repeat this process until you have made a design you are happy with.
d Save your design and, if you have permission, print it.

a Open a new Word document.
b Choose a basic shape (such as the trapezium in this pattern).
c Draw a shape at the top of the page by clicking and dragging.
d Copy the shape and paste it next to the original.
e Reflect the second shape vertically and position it next to the first.
f Select both objects. Copy and paste them so that they join the original pair.
g Look for shortcuts to continue your pattern.
h After placing 8 shapes, group them, copy them and paste them below the first row.
i Reflect the second row vertically and horizontally.
j Continue until you have 8 or more rows.

UNIT 8: TOPIC 2
 The Cartesion coordinate system

The Cartesian plane was named after René Descartes. It is split into four quadrants (or quarters). The x-axis and the y-axis meet in the middle at the origin point. named after him? Try to find out!

Numbers to the left of the origin point are negative. Numbers below the origin point are negative. Points are named by pairs of numbers called ordered pairs. Always read the number on the x-axis first.

Guided practice

1 The blue triangle is at point $(-4,5)$. What is at $(4,-5)$?

2 Write the coordinate points for:
a the green circle
\square
b the pink circle
\square

3 If you drew a straight line

 from $(-8,-6)$ to $(4,-5)$, which two shapes would it join?
4. True or false? If you drew a line from the centres of the two triangles, it would pass through the origin point.

5 a Draw a line from $(0,0)$ to $(4,-4)$.
b Through which other points does it pass? \qquad
c Draw a small square at $(-7,2)$.
d Draw a smiley face at $(9,-3)$.

Independent practice

1 Give the coordinate points for the:
a yellow dot:

b green dot:

c red dot:
\square
d blue dot:
\square

If you draw a line on the Cartesian plane, you can use an arrow to show the points that are joined. You would plot the blue line by writing $(-7,-8) \rightarrow(7,-8)$.

2 Finish the ordered pairs for the red triangle in question 1:

$$
(-7,3) \rightarrow(-5,3) \rightarrow \square \rightarrow \square
$$

3 Show how you could join points that would draw a rectangle between the four dots in question 1. Remember to "close" the rectangle.

4 a Draw a simple 2D shape in Quadrant IV.
b Write the ordered pairs that would draw your shape.
\qquad
5) Draw a face by following the ordered pairs below.

a $(4,6) \rightarrow(8,6) \rightarrow(8,10) \rightarrow(4,10) \rightarrow(4,6)$
b $(5,8) \rightarrow(5,7) \rightarrow(7,7) \rightarrow(7,8)$
c Draw dots at $(5,9)$, at $(6,8)$ and at $(7,9)$.

6 a Plot and record the points that would draw a large hexagon in Quadrant II.
b Plot and record the points that would draw a large pentagon in Quadrant III.
c Plot and record the points that would draw a large octagon in Quadrant IV.
d In Quadrant I, create a simple picture using straight lines. Write the coordinates that someone could follow to draw the same picture.

Extended practice

1 Will's bedroom always seemed to be untidy. One day his mother was so tired of it that she hid everything that Will had left on the floor. When he got home all he found was a chair in the centre of the room.

Will's mother told him to sit on the chair, and she gave him a copy of the number plane. She also gave him a list of the coordinate points for everything he had left on the floor. She said he could have them back if he correctly plotted them on the number plane.

Plot all the items Will had left around the room. Use a letter for each item (or draw small illustrations at each coordinate point).

A music player: $(2,5)$
D right shoe: $(-3,6)$
G calculator: $(-6,4)$
J video game: $(5,7)$
M shirt: (-2,-7)

B smart phone: $(-3,3)$
E left shoe: $(3,-6)$
H comb: $(4,2)$
K wallet: $(5,-3$
N jeans: $(3,-2)$

C watch: $(1,-2)$
F pencil case: $(-4,4)$
। deodorant: ($-3,-2$)
L bag: $(-5,1)$
0 sock: $(-2,1)$

UNIT 9: TOPIC 1
 Collecting, representing and interpreting data

A common way to represent data is on a graph. There are several types of graphs. The type of graph used depends on what is being represented.

Guided practice

1 These are horizontal and a vertical bar graphs.

a How many birds came on Friday?
b By how many was Tuesday's total less than Monday's total?
\square
\square

2 This is a dot plot.

What was the most common number of pets that people in the class have?

3 This is a line graph.

Estimate the amount the canteen made in Week 9.

4 This is a pictograph.
Graph to show how many stickers we have got this year

How many more stickers does Tran have than Sam? \qquad

Independent practice

1 a Use the information in the frequency table to make a pictograph. Take note of the key.
b What is the difference between the total of the two favourite colours and the total of the two least favourite colours?

Frequency table: Favourite colours for Year 6

Colour	Red	Yellow	Blue	Green	Purple
Frequency	24	10	26	19	13

Favourite colours for Year 6

Key

 $=4$ people

2 Add your favourite colour and the favourite colour of five other people to the information in question 1, then rewrite the frequency table.

Frequency table: Favourite colours for Year 6					
Colour	Red	Yellow	Blue	Green	Purple
Frequency					

Favourite colours for Year 6
3 a Transfer the information from question 2 onto a bar graph. Decide on a suitable scale.
b Is it better to use a pictograph or a bar graph to present this type of information? Give a reason for your answer.

4 This data shows hourly temperatures at a ski resort.

Time	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700
Temperature	$0^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$	$7^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{C}$	$6^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$

a Show the information on a line graph. Remember to label the graph.

b Write two statements about the information shown on the graph.

5 Collect data about the hair colour of students in your class. Organise it on this frequency table.

| Hair type | Dark | | Fair | | Medium | | Other | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Long | Short | Long | Short | Long | Short | Long | Short |
| Number | | | | | | | | |

a Choose an appropriate graph type to represent your data. The grid may help you.

Make sure your graph is easy to interpret.
b Write two statements about the information shown on the graph.
\qquad
\qquad
\qquad
\qquad

Extended practice

1 The circle graphs on this page show five of the Top 100 names for baby girls and boys in the first decade of this century.
a The combined total of which three names was about the same as the number of babies called Zoe?

2 The same data about baby names is shown on the bar graph.
a What information is shown on this graph that is not shown on the sector (circle) graph?
b Approximately half of the circle is used for the name Olivia.
About what fraction is used for Eva?

b The number of babies named Jade was 1234. There were 14 more babies called Eva than Annabelle. Estimate the numbers of babies \square named Eva and Annabelle.

3 Apart from the way that the graphs are shaded, what are the similarities or differences between the circle graphs for the popular names for girls and boys? Write some statements of finding.

4 This bar graph represents the same data as the circle graph in question 3.
a The number of babies named Xavier can be rounded to 1600. What is your estimate of the exact number?

b Comment on the differences between the most popular names for girls and boys from the data shown on the two bar graphs.

UNIT 9: TOPIC 2

Data in the media

Data that you collect yourself is called primary data. Some graphs are based on secondary data. This is when people use someone else's data.

DAIT,Y CnSS SURVEI SHOW HOMEWORK!
 NUMBER 1 PLACE FOR GOSSIP

Guided practice

1 Are the following likely to be based on primary or secondary data?
a You make a graph about the Top 10 holiday places after reading a magazine article.
b You make a graph about the favourite food of the people in your group.

When TV shows or newspapers collect data about what people think, they cannot ask everybody. They do a sample survey. If you get the views of everyone, it is

2 Read the following scenarios. Were the surveys likely to be sample or census?
a A phone company wanted to know what size of phone people prefer.
c A principal wanted to know what parents thought about a new school uniform.
\qquad
b A Year 2 class did a graph about their favourite colours.
\qquad
d A newspaper boss wanted to know what local people thought about having a new skate park.

3 A Year 6 teacher wants to know if the class would like to work on their science projects at lunchtime or at home. She surveys a group of eight of the 24 students.
a Would the collected data be primary or secondary?
b Was this a sample or a census survey?

Independent practice

1 The principal of the school in which the
When should Year 6 work on the science project? Year 6 teacher did a survey about the science project (see page 130) made a graph and published it in the school newsletter. Was the principal's graph based on primary or secondary data?

2. Look at the information in the graph above. The teacher had surveyed eight of the 24 students in the class.
a How many of the eight students wanted to do the project at home?

b How many answered I don't know?

3 The principal wrote in the newsletter: "The majority of the students surveyed prefer to work on their project at home." Is this a true statement of finding? Give a reason for your answer.

4 A parent contacted the principal and said, "If all 24 of the students had been surveyed, the result would have been different." Is this statement true? Underline one response:

- It is true
- It is not true
- It could be true.

5 The boss of the town's newspaper saw the school newsletter and wrote a newspaper headline based on the story:

Recent survey shows that most students in our town want more homework.

Underline one response. The headline is based on fact ...

- and is partly true
- and is definitely true
- but has no truth to it
- and could be true.

Did you know that Australians spend more money on video games per person per year than Americans do? Kids from the UK spend the most! The following data is true, but the newspaper headline is fake.

DAILY
 GOSS

NUMBER 1 PLACE FOR GOSSIP

NEW SURVEY SHOWS THAT
 AUSTRALIAN KIDS ARE THE SECOND-LAZIEST IN THE WORLD!!

News that will shock every parent - see page 7

6 a According to the graph, approximately how much per year does each Australian spend on video games?
b In how many of the Top 10 countries does each person spend over \$100 a year on video games?

c According to the graph, approximately how much per year does each Italian spend on video games? \square

Amount per person per year spent on video games

7 A TV presenter in the UK was shown the newspaper article about video games. He told viewers, "Video games are making our children lazy. We should stop this NOW. Call us and give your opinion!" Later, the presenter told viewers that his research showed that 90 per cent of parents want children to be banned from playing video games.

a Did the TV presenter conduct a census survey or a sample survey? \square
b Do you think the presenter's statement was a fair one? Give a reason for your answer.
c How many parents actually answered "Yes" to the presenter's question? \square

1 A newspaper in a town with a population of about 8000 printed an article about a new fast-food restaurant being built next to the local high school. The article was based on a survey carried out by a group of students. 100 people had been asked about the new restaurant.
a Did the students carry out a sample or a census survey?

b Did the newspaper use primary or secondary data?

2 a The majority of people said that the fast-food restaurant was a good idea. How many people might this have been?
b What is the largest percentage of those surveyed who might have objected?

c The newspaper did not mention anything about who had been surveyed. Some people complained to the newspaper editor about this. What do you think the main complaint was?

3 The following week the newspaper published an apology. It wrote that the 100 people who had been asked were students from the high school and that 97 of them thought the fast-food restaurant was a good idea.
a In what way were the survey results not a fair reflection of public opinion?
b What would have been a fairer way to carry out the survey?
c Look again at the newspaper headline. Comment on the level of truth in the statement. \qquad
4 The survey question was, "The restaurant has promised to give away 50 free burgers every week. Do you want a fast-food restaurant next to the school?"
a Why was including the part about the free burgers not appropriate?
b Write a survey question that would be appropriate to find out people's opinions about the new restaurant.

UNIT 9: TOPIC 3

Range, mode, mediain and meain

Range, mode, median and mean are all part of working out averages.We can use these weekly test scores to show range, mode, median and mean.

Week	1	2	3	4	5
Score	8	4	3	2	8

Guided practice

Range

The range is the difference between the highest and lowest in a set of numbers. In the test scores above, the range is $8-2=6$. So, the range is 6 .
1 Find the range in these sets of numbers.
a $22 \%, 16 \%, 64 \%, 80 \%, 31 \%$ \qquad b $75,81,150,110,95$
\qquad

Mode

The mode is the number that occurs most often. In the test scores above, 8 occurs more often than the others, so 8 is the mode. The mode is sometimes used to describe the average.

2 Find the mode in these sets of numbers.
a $35 \%, 34 \%, 44 \%, 35 \%, 31 \%$ \qquad b $75,76,75,76,76$ \qquad

Median

The median is the number in the middle of an ordered set of numbers. In order, the scores above are $2,3,4,8,8$. The middle number is 4 , so 4 is the median score. The median can also be used to describe the average.

3 Find the median in these sets of numbers.
a $76 \%, 44 \%, 24 \%, 15 \%, 71 \%$ \qquad b $15,16,25,26,15$ \qquad

Mean

To find the mean, add up all the numbers in the set and divide by however many numbers there are. In the scores above, the total of the five numbers is 25 . Then divide 25 by 5 , which equals 6 . So the mean score is 6 . The mean is most often used to describe average.

4 Find the mean in these sets of numbers.
\qquad b $15,16,14,13,17$

Independent practice

1 This table shows the minimum temperatures over a four-week period. Order the numbers for each week from lowest to highest. Then find the range, mode, median and mean temperatures.

| Week | Seven-day minimum
 temperatures | Order | Range | Mode | Median |
| :---: | :---: | :---: | :---: | :---: | :---: | Mean \mid

2 This set of six numbers has no middle number.
5, 6, 7, 8, 9, 10
To find the median if there is an even-numbered set of numbers, add the two middle numbers and then divide the total by 2 .
The two middle numbers in the set above are 7 and 8 , which total 15 . So, $15 \div 2=7 \frac{1}{2}$ or 7.5 . This is the median number.
Find the range and median in these sets of numbers.

Number set	Order	Range	Median
$8,2,6,4,10$			
$25,14,17,12,6,4$			
$12,8,2,6,2,5,21$			
$82,23,3,8,15,3,16,2$			

3 This set of numbers does not have a mode because no number occurs more often than any other. Sometimes it is not possible to show the mode.
25, 16, 11, 17, 19, 16
Find the mode and mean. If there is no mode write "none".

Number set	Mode	Mean
$8,2,6,4,10$		
$25,14,17,12,6,4$		
$12,8,2,6,2,5,21$		
$82,23,3,8,15,3,16,2$		

4 This graph compares the average hours of sunshine per day in London and Sydney.
Hours of sunshine per day in one year

a Look at the graph. Without doing any calculations, estimate the daily average hours of sunshine for the whole year.

| Sydney | London | |
| :---: | :---: | :---: | :---: |
| Mode | | |
| Mean | | |

b Calculate the daily average hours of sunshine for the whole year.

| Mode Sydney | London |
| :---: | :---: | :---: |
| Mean | |

c Which of the averages was more difficult to estimate? Why?
d Is the mode closer to the median for Sydney or London?
e The colder months in London are October to March. What is the difference between the daily average hours of sunshine in the colder and warmer months of the year?
f The warmer months in Sydney are October to March. What is the difference between the daily average hours of sunshine in the colder and warmer months of the year?

Extended practice

Is it best to use mode, median or mean to describe averages?
1 Interpreting an average from a set of data can be useful, but it can also be misleading. Sometimes people interpret data in a way that suits them.

This graph shows Sam's spelling test scores over five weeks. Sam uses the mode to describe the average score. He tells his family, "My average score in spelling tests is 10 out of 10."
a Is Sam correct in saying that his average score is 10 out of 10 ?

b Why is 10 out of 10 not a true reflection of Sam's average score?
c What is Sam's average score as a median average? \qquad
d What is Sam's average score as a mean average? \qquad

2 Here are Sam's scores out of 20 in the next 10 tests.

19, 20,
19,
19, 20,
20,
1, 19,
19, 19
a What is the range?
c What is the median average?
\qquad
e Which average would you use to best describe Sam's level in spelling? Give a reason for your answer.

3 Alex recorded the temperature at midday for one week in summer. Complete the table so that the mean average works out to be $29^{\circ} \mathrm{C}$.

Day	Temperature
Sunday	$28^{\circ} \mathrm{C}$
Monday	$29^{\circ} \mathrm{C}$
Tuesday	
Wednesday	$24^{\circ} \mathrm{C}$
Thursday	
Friday	$27^{\circ} \mathrm{C}$
Saturday	

UNIT 10: TOPIC 1

Describing probabilities

What is the likelihood of this 10 -section spinner landing on blue? You can describe the chance in different ways.

In words: It is unlikely.
As a fraction: There is a $\frac{1}{10}$ (or 1 out of 10) chance.
As a percentage: There is a 10% chance.
As a decimal: There is a 0.1 chance.

Guided practice

I'm certain

1 Using the probability words certain, highly likely, likely, even chance, unlikely, highly unlikely and impossible, describe the chance of the following things happening. (Try to use only one of each.)
a The next baby born will be a boy.
b You will receive a card for your birthday.
c You will fly to the moon 10 minutes from now.
d Somebody will smile in the next 10 minutes.
e New Year's Day will be on 1 January next year? \qquad
f You will appear on TV next month.
g You will hear a dog bark in the next 10 minutes. \qquad

This spinner is not divided equally.

2 There is half a chance that spinner will land on red. Which fraction describes the probability of it landing on yellow?

3 There is a 10% chance that the spinner will land on blue. Which percentage describes the probability of it landing on red?

4 The probability as a decimal of the spinner landing on yellow is 0.1 . Which decimal describes the probability of it landing on white?

Independent practice

1 A TV weather presenter says that there is not much chance of rain tomorrow. Which percentage best describes the probability? Underline one.
100\%
0\%
15\%
50\%
75\%

2 Using a fraction for one, a percentage for another and a decimal for another, describe the probability of this spinner landing on:

\qquad

Try to choose appropriate probability descriptions.

3 What is the probability of the spinner in question 2 not landing on green?

a green
b red
c blue
\square
(4) Describe something that has the following chance of happening:
a 0.9 of a chance.
b 5% chance.
c $\quad 1$ out of 2 chance. \qquad
d 0.25 of a chance. \qquad
e 100% chance.

5 Colour this spinner so that the following probabilities are true.

- There is a 20% chance for yellow.
- There is a 3 out of 10 chance for blue.
- There is 0.2 of a chance for green.
- There is not much chance for red.
- There is a $\frac{1}{5}$ chance for white.

6 Each jar contains 100 jelly beans. Write a value to show the probability of choosing (without looking) a white jelly bean from each jar. Choose from this list:

$$
0.07 \quad \frac{4}{10} \quad 8 \% \quad \frac{3}{4} \quad 0.8 \quad \frac{7}{10}
$$

A

B

C

D

F

7 Which of these does not show the chance of the spinner landing on blue? Circle one. $\frac{1}{4} \quad \frac{4}{10} \quad 25 \% \quad 0.25$

8 Amy has to choose a bead without looking. Colour the beads so that she has:

- $\frac{1}{6}$ probability of choosing a red bead.
- $33 \frac{1}{3} \%$ chance of choosing a yellow bead.
- 0.5 chance of choosing a blue bead.

9 There is a mix of blue and yellow marbles in each bag of 100. Jack took 20 marbles from each bag without looking. Use Jack's results to predict the number of blue and yellow marbles in each

Bag	After 20 been taken out:	My prediction after 100 have been taken out:		
A	Blue: 5	Yellow: 15	Blue:	Yellow:
B	Blue: 12	Yellow: 8	Blue:	Yellow:
C	Blue: 18	Yellow: 2	Blue:	Yellow:
D	Blue: 10	Yellow: 10	Blue:	Yellow:

Extended practice

Tran's game: Part 1

Tran plays a game of chance with some friends, in which a wheel spins and a ball lands on one of 37 numbers. Some players choose to guess what number the ball will land on. If they get it right, they win counters.
However, Tran wants to be the one who wins in the end. So he works out the likelihood of the ball landing on particular numbers. Zero is a green number and numbers 1 to 36 are either red or black.

1 a The chance of the ball landing on a particular number is one out of: \square
b If 37 people each choose a different number and put a counter on their number on the table, how many counters does Tran have now? \square
c The rules say that Tran gives out 35:1 to someone choosing the correct number. So, the winner gets their counter back, plus 35 more counters. However, Tran does not lose any counters. Explain why.
d If this continues for 1000 turns, Tran has done nothing except spin the wheel, but how many counters does he have now? \square
2 Tran realises that not many people would play if they only had a 1:37 chance of winning, so he thinks of other ways to get people to play. People can choose "red" or "black" numbers.
a The chance of the ball landing on a red number is almost (but not quite) 1 out of 2 . Explain why.
b Imagine 18 out of the 37 people in question 1 choose red, 18 choose black and one person puts their counter on the green zero. If the ball lands on a black number, how many people lose? \square
c If the ball lands on black, 18 people win. However, Tran still does not lose any counters. Explain why.
d If this continues for 10000 turns, Tran has done nothing except spin the wheel, but how many counters does he win? \square

You will need some dice for these activities.
Working out number values for the chance of something occurring does not necessarily mean that it will happen that way. There is only a 1 out of 6 chance of the dice landing on a 6 .

Guided practice

Is it harder to roll a six than a one?

1 a What is the chance of not rolling a six on one dice? \qquad $\left\{\begin{array}{l}\infty \rightarrow \infty \\ 0 \rightarrow \infty\end{array}\right.$
b Although it is unlikely, explain how somebody could get a six on the first roll of the dice. \qquad

2 a You are going to roll a dice. Predict the number of rolls it will take until you roll a six.
b Roll a dice until you get a six. How many rolls did it take?
c What was the difference between your prediction and reality? Try to explain it.
\qquad
\qquad

3 a Complete the table to show the number of times the dice should land on each number if it is rolled 36 times.
b Roll the dice 36 times and record the results.
c Write a sentence or two commenting on the results

Dice lands on:	Number of times it will land like that	
1		Actual number
2		
3		
4		
5		
6		

Independent practice

1 If you roll two dice, there is only one way for the dice to land to give the highest possible total of 12 .
a What is the lowest possible total? \qquad
b How many ways can the dice land to give the lowest total? \qquad

2 If you play a game with two 6-sided dice and you need to roll 11 to win the game, there are two ways the dice can land.

What are all the possible totals for two dice? Complete the table.

Total of two dice	Ways the dice can land	Total number of ways
12	$6+6$	1
11	$6+5,5+6$	2
10		
9		
8		
7		
6		
2		
2		

There are 36 differentways the dice can land.

3 Which total has the best chance of being rolled? \qquad
(4) There is a 1 out of 36 chance of getting a total of 12 with two dice. What are the chances of a total of:
a 11: \qquad
b 10 : \qquad
c 9 : \qquad
d 8 : \qquad
e 7: \qquad
f 6 : \qquad
g 5 : \qquad
h 4 : \qquad
i 3 : \qquad
j
2 : \qquad
k 1 : \qquad

5 For this activity you will need two dice. You will be rolling the dice 72 times. Write the probable number of times that the dice should make each total. Carry out the experiment and write the actual totals.

Total of two dice	Probable number of times out of 72	Actual number of times out of 72
12	2	
11		
10		
9		
8		
7		
6		
2		
2		
2		

6 Colour each spinner according to these rules. There must be:
a $<25 \%$ chance of it landing on yellow.
b $\quad>50 \%$ but $<75 \%$ chance of it landing on blue.
c $\quad>25 \%$ but $<50 \%$ chance of it
 landing on red.

Extended practice

Play Tran's game: Part 2

You will need:

- A 7-sided spinner (Trace it and glue onto card)
- Seven players with 10 counters each
- A "banker" with a bank of 50 counters
- \quad Seven cards numbered 0-6 for each player.

1 The "banker" needs to find out the chances of someone winning.
a What is the chance of the spinner landing on any particular number? \qquad
b The person guessing the correct number receives six counters. If seven people choose a different number each and the spinner lands on six, how much does the "banker" put in the bank? \qquad

How to play the game

2 The "banker" writes, "My starting balance is 50 counters" on a sheet of paper. Each player draws a Win-Lose table with 13 rows and 5 columns similar to this:

My Win-Lose Table				
Turn	Guess	Win	Lose	Balance
Starting balance:		10 counters		
1st turn	1 counter			
2nd turn	1 counter			
etc.				

3 Each player guesses the number the spinner will land on by placing a card with that number on it in front of themselves.
a Each player puts one counter in the middle and writes this in the "guess" column.
b Somebody spins the spinner.
c The person with the winning number gets six counters. The "banker" gets whatever is left over.
d Players complete the row on their Win-Lose table. The "banker" writes their own new balance.
e Repeat Steps 2 to 7 until the end of the tenth turn.
4 Complete the sentences.

- My final balance was \qquad counters.
- The balance for \qquad players had decreased by the end of the game.
- The balance for the "banker" increased/decreased (underline one).

GL.OSSARY

acute angle An angle that is smaller than a right angle or 90 degrees.

addition The joining or adding of two numbers together to find the total. Also known as adding, plus and sum. See also vertical addition. 3 and 2 is 5
algorithm A process or formula used to solve a problem in mathematics.

| Examples: |
| :--- | :--- | ---: |
| horizontal |
| algorithms |
| $24+13=37$ |\quad| vertical |
| :--- |\quad| 2 | 0 |
| ---: | :--- |

analogue time Time shown on a clock or watch face with numbers and hands to indicate the hours and minutes.
angle The space between two lines or surfaces at the point where they meet, usually measured in degrees.
anticlockwise Moving in the opposite direction to the hands of a clock.
area The size of an object's surface.

Example: It takes 12 tiles to cover this poster.

area model A visual way of solving multiplication problems by constructing a rectangle with the same dimensions as the numbers you are multiplying and breaking the problem down by place value.

$$
\begin{aligned}
& 6 \times 10=60 \\
& 6 \times 8=48 \\
& \text { so } \\
& 6 \times 18=108
\end{aligned}
$$

array An arrangement of items into even columns and rows to make them easier to count.
balance scale Equipment that balances items of equal mass; used to compare the mass of different items. Also called pan balance or equal arm balance.

bar graph A way of representing data using bars or columns to show the values of each variable.

base The bottom edge of a 2D shape or the bottom face of a 3D shape.

capacity The amount that a container can hold.

Example: The jug has a capacity of 4 cups.

Cartesian plane A grid system with numbered horizontal and vertical axes that allow for exact locations to be described and found.

categorical variables The different groups that objects or data can be sorted into based on common features.

Example: Within the category of ice-cream flavours, variables include:

vanilla

chocolate

strawberry
centimetre or cm A unit for measuring the length of smaller items.

Example: Length is 80 cm .
circle graph A circular graph divided into sections that look
 like portions of a pie.
circumference The distance around the outside of a circle.
clockwise Moving in the same direction as the hands of a clock.
common denominator Denominators that are the same. To find a common denominator, you need to identify a multiple that two or more denominators share.

$$
\begin{aligned}
\text { Example: } \begin{aligned}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8} & =\frac{4}{8}+\frac{2}{8}+\frac{1}{8} \\
& =\frac{7}{8}
\end{aligned}
\end{aligned}
$$

compensation strategy A way of solving a problem that involves rounding a number to make it easier to work with, and then paying back or "compensating" the same amount.

Example: $24+99=24+100-1=123$
composite number A number that has more than two factors, that is, a number that is not a prime number.
cone A 3D shape with a circular base that tapers to a point.
coordinates A combination of numbers or numbers and letters that show location on a grid map.

corner The point where two edges of a
shape or object meet. Also known as a vertex.

cross-section The surface or shape that results from making a straight cut through a 3D shape.

cube A rectangular prism where all six faces are squares of equal size.

cubic centimetre or $\boldsymbol{c m}^{\mathbf{3}} \quad$ A unit for measuring the volume of smaller objects.

Example: This cube is exactly 1 cm long,
1 cm wide and 1 cm deep.

cylinder A 3D shape with two parallel circular bases and one curved surface.
data Information gathered through methods such as questioning, surveys or observation.
decimal fraction A way of writing a number that separates any whole numbers from fractional parts expressed as tenths, hundredths, thousandths and so on.

Example: 1.9 is the same as 1 whole and 9 parts out of 10 or $1 \frac{9}{10}$.
degrees Celsius A unit used to measure the temperature against the Celsius scale where $0^{\circ} \mathrm{C}$ is the freezing point and $100^{\circ} \mathrm{C}$ is the boiling point.
denominator The bottom number in a fraction, which shows how many pieces the whole or group has been divided
 into.
diameter A straight line from one side of a circle to the other, passing through the centre point.

digital time Time shown on a clock or watch face with numbers only to indicate the hours and minutes.

division/dividing The process of sharing a number or group into equal parts, with or without remainders.

dot plot A way of representing pieces of data using dots along a line labelled with variables.

double/doubles Adding two identical numbers or multiplying a number by 2 .

$$
\text { Example: } 2+2=4 \quad 4 \times 2=8
$$

duration How long something lasts.
Example: Most movies have a duration of about 2 hours.
edge The side of a shape or the line where two faces of an object meet.

equal Having the same number or value.

Example: Equal size

Equal numbers
equation A written mathematical problem where both sides are equal.

Example: $\quad 4+5=6+3$

equilateral triangle A triangle with three sides and angles the same size.
equivalent fractions Different fractions that represent the same size in relation to a whole or group.

estimate A thinking guess.
even number A number that can be divided equally into 2.

Example: 4 and 8 are even numbers

face The flat surface of a 3D shape.

factor A whole number that will divide evenly into another number.

Example: The factors of 10 are 1 and 10 2 and 5
financial plan A plan that helps you to organise or manage your money.
flip To turn a shape over horizontally or vertically. Also known as reflection.

fraction An equal part of a whole or group. Example: One out of two parts or $\frac{1}{2}$ is shaded.

grams or \boldsymbol{g} A unit for measuring the mass of smaller items.

1000 g is 1 kg
graph A visual way to represent data or information.

GST or Goods and Services Tax A tax, such as 10%, that applies to most goods and services bought in many countries.
Example: Cost + GST (10%) = Amount you pay $\$ 10+\$ 0.10=\$ 10.10$
hexagon A 2D shape with six sides.

horizontal Parallel with the horizon or going straight across.

improper fraction A fraction where the numerator is greater than the denominator, such as $\frac{3}{2}$.
integer A whole number. Integers can be positive or negative.

inverse operations Operations that are the opposite or reverse of each other. Addition and subtraction are inverse operations.

Example: $6+7=13$ can be reversed with

invoice A written list of goods and services provided, including their cost and any GST.

Priya's Pet Store

Hax Invoice			
Item	Quantity	Unit price	Cost
Siamese cat	1	$\$ 500$	$\$ 500.00$
Cat food		20	$\$ 1.50$
	Total price of goods	$\$ 530.00$	
	GST (10\%)	$\$ 53.00$	
	Total	$\$ 583.00$	

isosceles triangle A triangle with two sides and two angles of the same size.
jump strategy A way to solve number problems that uses place value to "jump" along a number line by hundreds, tens and ones.

Example: $16+22=38$

kilograms or $\mathbf{k g}$ A unit for measuring the mass of larger items.

kilometres or $\mathbf{k m} \quad A$ unit for measuring long distances or lengths.

kite A four-sided shape where two pairs of adjacent sides are the same length.
legend A key that tells you what the symbols on a map mean.

length The longest dimension of a shape or object.

line graph A type of graph that joins plotted data with a line.
litres or L A unit for measuring the capacity of larger containers.

Example: The capacity of this bucket is 8 litres.

mass How heavy an object is.

Example: 4.5 kilograms 4.5 grams
mean The total of a set of numbers divided by however many numbers there are in the set.

Example: 5, 3, 6, 2, 4 - the mean is $20 \div 5=4$
median The number in the middle of an ordered set of numbers.

Example: $3,4,5,6,7$ - the median is 5
metre or $\boldsymbol{m} \quad$ A unit for measuring the length of larger objects.

milligram or $\boldsymbol{m g}$ A unit for measuring the mass of lighter items or to use when accuracy of measurements is important.

700 mg

millilitre or $\boldsymbol{m L}$ A unit for measuring the capacity of smaller containers.

1000 mL is 1 litre

millimetre or $\mathbf{m m} \quad$ A unit for measuring the length of very small items or to use when accuracy of measurements is important.

There are 10 mm in 1 cm .
mixed number A number that contains both a whole number and a fraction.

Example: $2 \frac{3}{4}$

mode The number that occurs most often in a set of numbers.

Example: 2, 3, 2, 5, 2 - the mode is 2
multiple The result of multiplying a particular whole number by another whole number.

Example: 10, 15, 20 and 100 are all multiples of 5 .
near doubles A way to add two nearly identical numbers by using known doubles facts.

Example: $4+5=4+4+1=9$
net A flat shape that when folded up makes a 3D shape.

number line A line on which numbers can be placed to show their order in our number system or to help with calculations.

number sentence A way to record calculations using numbers and mathematical symbols.

Example: $23+7=30$
numeral A figure or symbol used to represent a number.

Examples: 1 - one 2 -two 3 -three
numerator The top number in a fraction, which shows how many pieces you are dealing with.

obtuse angle An angle that is larger than a right angle or 90 degrees, but smaller than 180 degrees.

octagon A 2D shape with eight sides.

odd number A number that cannot be divided equally into 2.

Example: 5 and 9 are odd numbers.

operation A mathematical process. The four basic operations are addition, subtraction, multiplication and division.
origin The point on a Cartesian plane where the x-axis and y-axis intersect.
origin

outcome The result of a chance experiment.

Example: The possible outcomes if you roll a dice are $1,2,3,4,5$ or 6 .
parallel lines Straight lines that are the same distance apart and so will never cross.

parallelogram A four-sided shape where each pair of opposite sides is parallel.

pattern A repeating design or sequence of numbers.

Example:

Shape pattern
Number pattern
$2,4,6,8,10,12$
pentagon A 2D shape with five sides.

per cent or \% A fraction out of 100.
Example: $\frac{62}{100}$ or
62 out of 100

is also 62%.
perimeter The distance around the outside of a shape or area.

Example: Perimeter $=$
$7 m+5 m+10 m+3$
 $m+6 m=31 m$
pictograph A way of representing data using pictures so that it is easy to understand.

Example: Favourite juices in our class

place value The value of a digit depending on its place in a number.

M	H Th	T Th	Th	H	T	0
			2	7	4	8
		2	7	4	8	6
	2	7	4	8	6	3
2	7	4	8	6	3	1

polygon A closed 2D shape with three or more straight sides.

polyhedron (plural polyhedra) A 3D shape with flat faces.

polyhedra

not polyhedra
power of The number of times a particular number is multiplied by itself.

Example: 4^{3} is 4 to the power of 3 or $4 \times 4 \times 4$.
prime number A number that has just two factors -1 and itself. The first four prime numbers are 2, 3, 5 and 7 .
prism A 3D shape with parallel bases of the same shape and rectangular side faces.

triangular prism

rectangular prism

hexagonal prism
probability The chance or likelihood of a particular event or outcome occurring.

Example: There is a 1 in 8 chance this spinner will land on red.
protractor An instrument used to measure the size of angles in degrees.

pyramid A 3D shape with a 2D shape as a base and triangular faces meeting at a point.

square pyramid

hexagonal pyramid
quadrant A quarter of a circle or one of the four quarters on a Cartesian plane.

quadrilateral Any 2D shape with four sides.

radius The distance from the centre of a circle to its circumference or edge.
 range The difference between the highest and lowest in a set of numbers.
Example: 5, 3, 6, 2, 4- the range is $6-2=4$
reflect To turn a shape over horizontally or vertically. Also known as flipping.

reflex angle An angle that is between 180 and 360 degrees in size.

remainder An amount left over after dividing one number by another.

Example: $11 \div 5=2 r 1$
rhombus A 2D shape with four sides, all of the same length and opposite sides parallel.

right angle An angle of exactly 90 degrees.

right-angled triangle A triangle where one angle is exactly 90 degrees.
rotate Turn around a point.
rotational symmetry A shape has rotational symmetry if it fits into its own outline at least once while being turned around a fixed centre point.

round/rounding To change a number to another number that is close to it to make it easier to work with.

229 can be

rounded up to the nearest 10个 230

OR the nearest 100
scale A way to represent large areas on maps by using ratios of smaller to larger measurements.

Example: $1 \mathrm{~cm}=5 \mathrm{~m}$
scalene triangle A triangle where no sides are the same length and no angles are equal.
sector A section of a circle bounded by two radius lines and an arc.

semi-circle Half a circle, bounded by an arc and a diameter line.

skip counting Counting forwards or backwards by the same number each time.

Examples:
Skip counting by fives: $5,10,15,20,25,30$
Skip counting by twos: 1, 3, 5, 7, 9, 11, 13
slide To move a shape to a new position without flipping or turning it. Also known as translate.

sphere A 3D shape that is perfectly round.
split strategy A way to solve number problems that involves splitting numbers up using place value to make them easier to work with.

Example: $21+14=$
$20+10+1+4=35$

square centimetre or $\mathbf{c m}^{2}$
A unit for measuring the area of smaller objects. It is exactly 1 cm long and 1 cm wide.

square metre or $\boldsymbol{m}^{\mathbf{2}} \quad$ A unit
for measuring the area of larger spaces. It is exactly 1 m long and 1 m wide.

square number The result of a number being multiplied by itself. The product can be represented as a square array.

Example: 3×3 or $3^{2}=9$

straight angle An angle that is exactly 180 degrees in size.

strategy A way to solve a problem. In mathematics, you can often use more than one strategy to get the right answer.

Example: $32+27=59$
Jump strategy
Split strategy

$$
30+2+20+7=30+20+2+7=59
$$

subtraction The taking away of one number from another number. Also known as subtracting, take away, difference between and minus. See also vertical subtraction.
survey A way of collecting data or information by asking questions.

Strongly agree Agree Disagree
Strongly disagree \square
symmetry A shape or pattern has symmetry when one side is a mirror image of the other.
table A way to organise information that uses columns and rows.

Flavour	Number of people
Chocolate	12
Vanilla	7
Strawberry	8

tally marks A way of keeping count that uses single lines with every fifth line crossed to make a group.

term A number in a series or pattern.

Example: The sixth term in this pattern is 18.

3	6	9	12	15	18	21	24

tessellation A pattern formed by shapes that fit together without any gaps.

thermometer An instrument for measuring temperature.

three-dimensional or 3D

A shape that has three dimensions - length, width and depth.
3D shapes are not flat.

time line A visual representation of a period of time with significant events marked in.

translate To move a shape to a new position without flipping or turning it. Also known as slide.

trapezium A 2D shape with four sides and only one set of parallel lines.

triangular number A number that can be organised into a triangular shape. The first four are:

two-dimensional or 2D

A flat shape that has two dimensions length and width.

unequal Not having the same size or value.
Example: Unequal size Unequal numbers

value How much something is worth.
Example:
This coin is worth 5c. This coin is worth \$1.

vertex (plural vertices) The point where two edges of a shape or object meet. Also known as a corner.

vertical At a right angle to the horizon or straight up and down.

vertical addition A way of recording addition so that the placevalue columns are lined up vertically to make calculation easier.

	T	0
	3	6
+	2	1
	5	7
	T	0
	5	7
-	2	1
	3	6

volume
 Example: This object has
a volume of 4 cubes.
whole All of an item or group.
Example: A whole shape A whole group

width The shortest dimension of a shape or object. Also known as breadth.

\boldsymbol{x}-axis The horizontal reference line showing coordinates or values on a graph or map.

\boldsymbol{y}-axis The vertical reference line showing coordinates or values on a graph or map.

ANSWERS

UNIT 1: Topic 1

Guided practice

1

M	Hth	Th	Th	H	T	0	Number
5	0	0	0	0	0	0	5000000
	3	0	0	0	0	0	300000
		6	0	0	0	0	60000
			7	0	0	0	7000
				9	0	0	900
					1	0	10
						8	8

2 a 51604
b 200026
c 12010

Independent practice

1 a 60000 b 300000
c 6000
d 1000000
e 80000000
f 50000000
2 a sixty thousand
b three hundred thousand
c six thousand d one million
e eighty million f fifty million
3 a 80487000
b 10362059
c 114760209
d 1400593001
4 a As Student Book
b $200000+10000+4000+800+60+7$
c $2000000+500000+60000+$ $7000+300+20+1$
d $5000000+600000+70000+3000$ $+200+7$
e $50000000+7000000+300000+$ $10000+9000+200+40$
f $400000000+7000000+500000+$ $8000+4$
5 a 9754321
b 5123479
c 9543217
d 2314579

6 a 6142 793: six million, one hundred and forty-two thousand, seven hundred and ninety-three
b 280526 306: two hundred and eighty million, five hundred and twenty-six thousand, three hundred and six

Extended practice

$\mathbf{1}$	\mathbf{a}	+100	$\mathbf{b}+40000$
	\mathbf{c}	-20000	$\mathbf{d}+1$
$\mathbf{2}$	\mathbf{a}	$\$ 340000$	b $\$ 705000$
	\mathbf{c}	$\$ 825000$	d $\$ 1250000$

3 Answers may vary. Look for students who justify their answers appropriately. Possible answers:
a The digit 5. It means $500000 . \$ 500000$ is a lot of money!
b The digit 2. It means 2 whole ones. I wouldn't want to write out my times tables any more than that!
c The digit 1. It means 10 . I really like them but too many might make me ill!

UNIT 1: Topic 2

Guided practice

$13 \times 3=3^{2}, 3^{2}=9,4 \times 4=4^{2}, 4^{2}=16$, $5 \times 5=5^{2}, 5^{2}=25,6 \times 6=6^{2}, 6^{2}=36$
$21+2+3=6,1+2+3+4=10$

Independent practice

1 (Shading may vary.) $7 \times 7=7^{2}, 8 \times 8=8^{2}$, $9 \times 9=9^{2}, 10 \times 10=10^{2}, 7^{2}=49,8^{2}=64$, $9^{2}=81,10^{2}=100$
2 a 121
b Teacher to check, e.g. The digits alternate between odd and even.
c 10000
3 Teacher to check artwork.
15: $1+2+3+4+5=15$,
21: $1+2+3+4+5+6=21$,
28: $1+2+3+4+5+6+7=28$,
36: $1+2+3+4+5+6+7+8=36$,
$45: 1+2+3+4+5+6+7+8+9=45$,
$55: 1+2+3+4+5+6+7+8+9+10=55$
4 a 66
b 36
c Teacher to check, e.g. The numbers alternate between two odd numbers, then two even numbers.

Extended practice

1

Square number	Mulftiplication fact	Addfition fact
$1^{2}=1$	$1 \times 1=1$	1
$2^{2}=4$	$2 \times 2=4$	$1+3=4$
$3^{2}=9$	$3 \times 3=9$	$1+3+5=9$
$4^{2}=16$	$4 \times 4=16$	$1+3+5+7=16$
$5^{2}=25$	$5 \times 5=25$	$1+3+5+7+9=25$
$6^{2}=36$	$6 \times 6=36$	$1+3+5+7+9+11$ $=36$
$7^{2}=49$	$7 \times 7=49$	$1+3+5+7+9+11+$ $13=49$
$8^{2}=64$	$8 \times 8=64$	$1+3+5+7+9+11+$ $13+15=64$
$9^{2}=81$	$9 \times 9=81$	$1+3+5+7+9+11+$ $13+15+17=81$
$10^{2}=100$	$10 \times 10=100$	$1+3+5+7+9+11+$ $13+15+17+19=100$

2 a Teacher to check, e.g. To get to the next square number, you add the next odd number.
b $11^{2}=121,11 \times 11=121,1+3+5+7+9$ $+11+13+15+17+19+21=121$
c 23
3 a 15
b $1,5,12,22,35$
c Teacher to check, e.g. To get to the second pentagonal number you add 4 to the first one $(1+4=5)$. For the next one you add 3 more than that ($5+7=12$). Each time, you add 3 more than last time.
d

UNIT 1: Topic 3

Guided practice

1

$\begin{aligned} & \text { 䯧 } \\ & \text { E } \end{aligned}$	Factors (numbers it can be divided by)	How many factors?	Prime or composite?	
			Prime	Composite
1	1	1	neither	
2	1 and 2	2	\checkmark	
3	1 \& 3	2	\checkmark	
4	1,2\&4	3		\checkmark
5	1 \& 5	2	\checkmark	
6	1,6,2,3	4		\checkmark
7	1 \& 7	2	\checkmark	
8	1,8,2,4	4		\checkmark
9	1,9,3	3		\checkmark
10	1,10,2,5	4		\checkmark
11	1 \& 11	2	\checkmark	
12	$\begin{aligned} & 1,12,2,6 \\ & 3,4 \end{aligned}$	6		\checkmark
13	$1 \& 13$	2	\checkmark	
14	1, 14, 2, 7	4		\checkmark
15	1, 15, 3, 5	4		\checkmark
16	1, 16, 2, 8, 4	5		\checkmark
17	1 \& 17	2	\checkmark	
18	$\begin{aligned} & 1,18,2,9, \\ & 3,6 \end{aligned}$	6		\checkmark
19	1 \& 19	2	\checkmark	
20	$\begin{aligned} & 1,20,2,10, \\ & 4.5 \end{aligned}$	6		\checkmark

2 a $2,3,5,7,11,13,17,19$
b Teacher to check, e.g. 2 is the only even prime number.
Independent practice

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{5}$	6	$\mathbf{7}$	8	9	10
$\mathbf{1 1}$	12	$\mathbf{1 3}$	14	15	16	$\mathbf{1 7}$	18	$\mathbf{1 9}$	20
21	22	$\mathbf{2 3}$	24	25	26	27	28	$\mathbf{2 9}$	30
$\mathbf{3 1}$	32	33	34	35	36	$\mathbf{3 7}$	38	39	40
$\mathbf{4 1}$	42	$\mathbf{4 3}$	44	45	46	$\mathbf{4 7}$	48	49	50
51	52	$\mathbf{5 3}$	54	55	56	57	58	$\mathbf{5 9}$	60
$\mathbf{6 1}$	62	63	64	65	66	$\mathbf{6 7}$	68	69	70
$\mathbf{7 1}$	72	$\mathbf{7 3}$	74	75	76	77	78	$\mathbf{7 9}$	80
81	82	$\mathbf{8 3}$	84	85	86	87	88	$\mathbf{8 9}$	90
91	92	93	94	95	96	$\mathbf{9 7}$	98	99	100

2 a 97
b False
c False (49 even composite numbers, 25 odd composite numbers).

a The prime factors of 10 are 2 and 5 . So $2 \times 5=10$

b The prime factors of 9 are 3 and 3 . So $3 \times 3=9$

d The prime factors of 21 are 3 and 7 . So $3 \times 7=21$

g The prime factors of 26 are \mathbf{h} 2 and 13 . So $2 \times 13=26$

a The prime factors of 14 are \mathbf{b} 2 and 7 . So $2 \times 7=14$ 3 and 11 . So $3 \times 11=33$

b The prime factors of 55 are 5 and 11 . So $5 \times 11=55$

c The prime factors of 15 are 3 and 5 . So $3 \times 5=15$

The prime factors of 39 are 3 and 13 . So $3 \times 13=39$

The prime factors of 33 are i The prime factors of 34 are 2 and 17 . So $2 \times 17=34$

Independent proctice

$\mathbf{1}$	\mathbf{a}	379	\mathbf{b}	599	\mathbf{c}	1298
	\mathbf{d}	2284	\mathbf{e}	3909	\mathbf{f}	10990
$\mathbf{2}$	a	446	\mathbf{b}	765	\mathbf{c}	874
	\mathbf{d}	545	\mathbf{e}	768	\mathbf{f}	1206

3 Examples of strategies that might be used:
a 898 (I said $650+250=900$ then took away 2.)
b 1054 (I took 200 from 1253 $=1053$. Then I added 1 back.)
c 3500 (I doubled 1500 then doubled 250.)
d 14168 (I took 400 away and then took another 10.)
4 Examples of the way the numbers might be rounded:

	Number fact	Rounded number	Irounded this number to the hearest...
a	Australia has 812 972 kilometres of roads.	813000 km	thousand
b	The Electricity Company of China employs 1502000 people.	1500000	hundred thousand
c	The Mexican soccer player, Blanco, earned \$2 943702 in 2009.	\$3000 000	million
d	The fastest speed recorded at the Indianapolis 500 car race was $299.3 \mathrm{~km} / \mathrm{h}$.	$300 \mathrm{~km} / \mathrm{h}$	hundred
e	The fastest 100-metre sprint time for a woman is 10.49 seconds.	10.5	tenth
f	The US department store Walmart employs 2100000 people.	2000000	million
g	Each Australian eats an average of 17 L 600 mL of ice-cream a year.	18L	litre
h	The longest rail tunnel is in Switzerland. It is 57.1 km long.	57 km	kilometre
i	The amount of money the movie Avatar made was $\$ 2783919000$.	\$3 billion	billion
j	Foreign tourists spend \$29 127000000 a year in Australia.	$\begin{aligned} & \$ 29 \text { billion } \\ & \text { or } \$ 30 \\ & \text { billion } \end{aligned}$	billion or ten billion

5 Basic:
$\$ 22490$
Deluxe:
$\$ 31490$
Premium: \$38959 (1) $650+250=900$ then took nded:

5	Basic:	$\$ 22490$
Deluxe:	$\$ 31490$	
	Premium:	$\$ 38959$

Extended practice

1

a $20=2 \times 2 \times 5$ $20=2^{2} \times 5$
b $18=3 \times 3 \times 2$
c $28=2 \times 2 \times 7$ $28=2^{2} \times 7$
d $36=2 \times 2 \times 3 \times 3$ $36=2^{2} \times 3^{2}$

2 Diagrams may vary, e.g. the second row of c) could show 3×8. Teacher to check the resulting prime factors.

a $27=3 \times 3 \times 3$

b $30=2 \times 5 \times 3$
c $24=2 \times 2 \times 2 \times 3$ $24=2^{3} \times 3$

UNIT 1: Topic 4

Guided practice

1	Problem	Using rounding it becomes			Now Ineed to		Answer
a	$317+199$	$317+200=517$			take away 1		516
b	275-101	$275-100=175$			take away another 1		174
c	$527+302$	527 +	$300=$	827	add another	2	829
d	377-98	377 -	$100=$	277	add back2		279
e	$249+249$	$250+250=500$			take away 2		498
f	938-206	$938-200=738$			take away another 6		732
g	$1464+998$	$1464+1000=2464$			take away 2		2462
2	Problem	Expand the numbers			Join the partners		Answer
a	$370+520$	$300+70+500+20$			$300+500+70+20$		890
b	$2200+3600$	$2000+200+3000+600$			$2000+3000+200+600$		5800
c	$342+236$	$300+40+2+200+30+6$			$300+200+40+30+2+6$		578
d	$471+228$	$400+70+1+200+20+8$			$400+200+70+20+1+8$		699
e	$743+426$	$700+40+3+400+20+6$			$700+400+40+20+3+6$		1169
f	$865+734$	$800+60+5+700+30+4$			$800+700+60+30+5+4$		1599
g	$4270+3220$	$4000+200+70+3000+200+20$			$4000+3000+200+200+70+20$		7490

Extended practice

1 Examples of how the numbers might be rounded:

Problem		Round the numbers	Estimate the answer	Which is the likely answer?
e.g.	$109897+50157$	$110000+50000$	160000	261054 or 161054
a	$5189-2995$	$5000-3000$	2000	2194 or 3194
b	$2958+6058$	$3000+6000$	9000	9016 or 8016
c	$8215-3108$	$8000-3000$	5000	5907 or 5107
d	$15963+14387$	$16000+14000$	30000	29350 or 30350
e	$8954-3928$	$9000-4000$	5000	5026 or 4026
f	$4568+4489$	$4500+4500$	9000	8057 or 9057
g	$13149-7908$	$13000-8000$	5000	6241 or 5241
h	$124963+98358$	$125000+100000$	225000	223321 or 213321

2 Examples of ways of rounding:

Problem		Round the numbers	Estimate the answer	Calculator answer
e.g.	$6190+1880$	$6000+2000$	8000	8070
a	$4155+2896$	$4000+3000$	7000	7051
b	$9124-8123$	$9000-8000$	1000	1001
c	$24065+5103$	$24000+5000$	29000	29168
d	$19753-10338$	$20000-10000$	10000	9415
e	$101582+49268$	$101000+49000$	150000	150850
f	$298047-198214$	$300000-200000$	100000	99833
g	$10092704+$ 1099583	$1000000+$ 1000000	2000000	2188857
h	$1499836+$ 1489967	$1500000+$ 1500000	3000000	2989803

Unit 1: Topic 5

Guided practice

$\mathbf{1}$	a	1234	b	2345	c
	$\mathbf{d} 4566$				
	d	4567	e	5789	f
5678					

Independent practice

$\mathbf{1}$	\mathbf{a}	1111	\mathbf{b}	2222	\mathbf{c}	3333
	\mathbf{d}	4444	\mathbf{e}	5555	\mathbf{f}	6666
	\mathbf{g}	7777	\mathbf{h}	8888	\mathbf{i}	9999
	\mathbf{j}	10	000	\mathbf{k}	11111	

2 Look for the strategies used to solve the problem. One simple solution is to subtract 123 from 99999 four times, making the addition $99507+123+123+123+123$.
3 a

Country	Paved	Unpaved roads	Total
USA	4165110	2265256	6430366
India	1603705	1779639	3383344
China	1515797	354864	1870661
France	951220	0	951220
Japan	925000	258000	1183000
Spain	659629	6663	666292
Canada	415600	626700	1042300
Australia	336962	473679	810641
Brazil	96353	1655515	1751868

b India, Canada and Brazil
c USA and China
d China and Canada (981564 km)

Extended proctice

1947344
2562996
3 The correct answer is 453 487. Teacher to check students' methods of confirming the correct answer.
$4335358000000 \mathrm{~km}^{2}$

UNIT 1: Topic 6

Guided practice

$\mathbf{1}$	a	229	b	326	c	2208	d	2119
$\mathbf{2}$	a	589		b	199	c	2149	
	d	1985		e	9988	\mathbf{f}	8899	

Independent practice

$\mathbf{1}$	\mathbf{a}	54321	\mathbf{b}	65432	c	76543
	\mathbf{d}	87654	\mathbf{e}	98765	\mathbf{f}	56789
	\mathbf{g}	45678	h	34567	\mathbf{i}	23456

j 12345
i 23456
j 12345
$29875432-2345789=7529643$
$\begin{array}{llll}3 & \mathbf{a} & 3268 & \text { b } \\ 12619 & \text { c } 22656\end{array}$ d 34579 e 375777 f 676068 g 749 h 3649 i 320054 j 65622

Extended practice

1 a 193635 b 126296 c 191790
2 a Teacher to check; using any three digits will result in the answer 1089.
b The answer is still 1089.

Unit 1: Topic 7

Guided practice

	\times	10	100	1000	10000
a	29	290	2900	29000	290000
b	124	1240	12400	124000	1240000
c	638	6380	63800	638000	6380000
d	\$1.25	\$12.50	\$125	\$1250	\$12500
e	750	7500	75000	750000	7500000

2	\div	10	Write the multiplication fact partner
a	370	37	$37 \times 10=370$
b	4700	470	$470 \times 10=4700$
c	2000	200	$200 \times 10=2000$
d	$\$ 22.50$	$\$ 2.25$	$\$ 2.25 \times 10=\$ 22.50$
e	54	5.4	$5.4 \times 10=54$
$\mathbf{3}$			
	\div	100	Write the multiplication fact partner
a	700	7	$7 \times 100=700$
b	$\$ 495$	$\$ 4.95$	$\$ 4.95 \times 100=\$ 495$
c	5000	50	$50 \times 100=5000$
d	12000	120	$120 \times 100=12000$
e	8750	87.5	$87.5 \times 100=8750$

Independent proctice

$\left.$| 1 | 1 | | 10 | 20
 [double] | 40
 [double
 again] |
| :--- | :--- | :--- | :--- | :--- | :--- | | 80 |
| :--- |
| [double |
| again] | \right\rvert\,

2	\div	10	20 [halve it]	40 [halve again]	80 Thalve again]
a	400	40	20	10	5
b	2000	200	100	50	25
c	480	48	24	12	6
d	10000	1000	500	250	125
e	8800	880	440	220	110

3	$\times 5$	First multiply by 10	Then halve it	Multiplication fact	
a	24	240	120	$24 \times 5=120$	
b	68	680	340	$68 \times 5=340$	
c	120	1200	600	$120 \times 5=600$	
d	500	5000	2500	$500 \times 5=2500$	
e	1240	12400	6200	$1240 \times 5=6200$	
$\mathbf{4}$					
	$\div 5$	First divide by 10	Then double it	Division fact	
a	420	42	84	$420 \div 5=84$	
b	350	35	70	$350 \div 5=70$	
c	520	52	104	$520 \div 5=104$	
d	900	90	180	$900 \div 5=180$	
e	1200	120	240	$1200 \div 5=240$	
5					

5	$\times 30$	First $\times 10$	Then $\times 3$	Multiplication fact
a	15	150	450	$15 \times 30=450$
b	22	220	660	$22 \times 30=660$
c	33	330	990	$33 \times 30=990$
d	150	1500	4500	$150 \times 30=4500$
e	230	2300	6900	$230 \times 30=6900$

$\mathbf{6}$	$\times 30$	First $\times 3$	Then $\times 10$	Multiplication fact
a	15	45	450	$15 \times 30=450$
b	22	66	660	$22 \times 30=660$
c	33	99	990	$33 \times 30=990$
d	150	450	4500	$150 \times 30=4500$
e	230	690	6900	$230 \times 30=6900$

$\mathbf{7}$	\mathbf{a}	600	\mathbf{b}	880	\mathbf{c}
\mathbf{d}	1700	\mathbf{e}	840	\mathbf{f}	5000
	\mathbf{d}	1200	\mathbf{h}	1440	\mathbf{i}
\mathbf{g}	1270				
	\mathbf{j}	$\$ 72$	\mathbf{k}	$\$ 90$	\mathbf{l}
\mathbf{j}	416				
	\mathbf{m}	208	\mathbf{n}	62	

$8 \quad \$ 87.40$
Extended proctice

1	$\times 15$	$\times 10$	Halve it tofind $\times 5$	Add the two answers	Multiplication fact
a	12	120	60	180	$12 \times 15=180$
b	32	320	160	480	$32 \times 15=480$
c	41	410	205	615	$41 \times 15=615$
d	86	860	430	1290	$86 \times 15=1290$
e	422	4220	2110	6330	$422 \times 15=6330$

$\left.$| 2 | $\mathbf{2}$ | $\times 13$ | $\times 10$ | $\times 3$ | Add
 the two
 answers |
| :--- | :--- | :--- | :--- | :--- | :--- | | Multiplication |
| :--- | :--- | :--- | :--- | :--- |
| fact | \right\rvert\,

$\mathbf{3}$	a	2500	b	6300	c	4
	\mathbf{d}	30	e	8800	f	$\$ 1.80$
	g	$\$ 68$	h	$\$ 0.90$		
$\mathbf{4}$	a	60	b	3600		

Unit l: Topic 8

Guided practice

$\mathbf{1}$	\mathbf{a}	162	\mathbf{b}	325		
$\mathbf{2}$	\mathbf{a}	508	\mathbf{b}	981	\mathbf{c}	630
	\mathbf{d}	916	\mathbf{e}	8190	\mathbf{f}	9415
	\mathbf{g}	8512	\mathbf{h}	7285	\mathbf{i}	9042

Independent practice

Unit 1: Topic 9

Guided practice

$\mathbf{1}$	\mathbf{a}	69	\mathbf{b}	442	\mathbf{c}	94
	\mathbf{d}	110	\mathbf{e}	4321	\mathbf{f}	1201
	\mathbf{g}	934	\mathbf{h}	4841	\mathbf{i}	4322
	\mathbf{j}	4322	\mathbf{k}	12343	\mathbf{I}	54322
$\mathbf{2}$	\mathbf{a}	215	\mathbf{b}	582	\mathbf{c}	358
	\mathbf{d}	2686	\mathbf{e}	659	\mathbf{f}	348

Independent practice

1 a 4 r2 or $4 \frac{2}{3} \quad$ b 9 r2 or $9 \frac{2}{5}$
c 9 r 3 or $9 \frac{3}{4} \quad$ d 8 r 1 or $8 \frac{1}{8}$
e 8 r 5 or $8 \frac{5}{9}$ f 8 r 5 or $8 \frac{5}{7}$
g $9 r 3$ or $9 \frac{3}{9}$ or $9 \frac{1}{3}$
h 9 r4 or $9 \frac{4}{6}$ or $9 \frac{2}{3}$
2 a 116 r 3 or $116 \frac{3}{4} \quad$ b 90 r 2 or $90 \frac{2}{3}$
c 32 r5 or $32 \frac{5}{6}$
d 148 r 2 or $148 \frac{2}{5}$
e 858 r 1 or $858 \frac{1}{3}$
f 187 r 1 or $187 \frac{1}{9}$
g 694 r 1 or $694 \frac{1}{6}$
h 331 r2 or $331 \frac{2}{7}$
3 a 62 and one left over (Possible justification: they would not be able to split a marble in half.)
b $7 \frac{1}{2}$ (Possible justification: they would probably share the extra donut between them.)
4 a $\$ 26.50 \quad$ b $\quad \$ 18.50 \quad$ c $\$ 11.50$ d $\$ 18.25$ e $\$ 16.50$ f $\$ 21.50$
$\begin{array}{lllll}\mathbf{5} & \mathbf{a} & 148.75 & \text { b } & 125.6\end{array}$ c 63.25 $\begin{array}{lllll}\text { d } & 136.8 & \text { e } & 336.75 & \text { f } \\ 1231.5\end{array}$ $\begin{array}{lllll}\text { g } & 2865.5 & \mathbf{h} & 2319.6 & \mathbf{i} \\ 6523.25\end{array}$
6 a 36
b $\$ 36.25$

Extended proctice

1 a $291.33 \quad$ b 124.25 c 83.14 $\begin{array}{lllll}\text { d } 42.33 & \text { e } & 80.44 & \text { f } & 1828.33\end{array}$ $\begin{array}{lllll}\mathbf{g} & 348.6 & \mathbf{h} & 1226.14 & \mathbf{i} \\ 11494.75\end{array}$ j 14321.33 k 5095.2 I 10807.22
$\mathbf{2} \mathbf{a} 2$ b 2 c 4 d 3 e 2 f 5 g 5
3 It erupts 20 times a day. Look for the strategy that the student uses, e.g. division by estimation or $365 \times 10=3650$, double $3650=7300$.

Unit 1: Topic 10

Guided practice

1

2

4	
	square
$3-$	black dot
2 -	
$1-$	
0 -	
-1 -	triangle
-2 -	
-3-1	blue dot
-4 -	
-5 -	star

$\mathbf{4}$	\mathbf{a} true	\mathbf{b}	false	\mathbf{c}	true
\mathbf{d}	false	\mathbf{e}	true	\mathbf{f}	false
\mathbf{g}	false	\mathbf{h}	true		

Independent proctice

1 a $-2+4=2 \quad$ b $2-3=-1$
c $4-7=-3 \quad$ d $-6+5=-1$
e $-3-5=-8 \quad$ f $-8+8=0$
g $-8+10=2 \quad$ h $7-11=-4$
i $-7+15=8 \quad$ j $6-13=-7$
$\begin{array}{lllll}\mathbf{2} & -1 & \mathbf{b} & -1 & \mathbf{c} \\ -4\end{array}$
$\begin{array}{lllll}\mathbf{d} & -5 & \mathbf{e} & -10 & \mathbf{f}\end{array}-60$
3 a $-60,-50,-40,-30,-20,-10,0,10,20$, 30, 40, 50
b $-25,-20,-15,-10,-5,0,5,10,15,20$, 25, 30
c $-28,-24,-20,-16,-12,-8,-4,0,4,8$, 12, 16
d $-35,-28,-21,-14,-7,0,7,14,21,28$, 35, 42
e $-63,-54,-45,-36,-27,-18,-9,0,9$, 18, 27, 36
$4 \mathbf{a} \& \mathbf{b}$ Tuesday $\quad 2^{\circ} \mathrm{C}$
Sunday $\quad 1^{\circ} \mathrm{C}$

Wednesday $0^{\circ} \mathrm{C}$
Saturday $\quad-1^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Monday } & -2^{\circ} \mathrm{C} \\ \text { Friday } & -3^{\circ} \mathrm{C}\end{array}$
Thursday $\quad-4^{\circ} \mathrm{C}$
c Thursday d $6^{\circ} \mathrm{C}$
5
$\begin{array}{lllllllllll}-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5\end{array}$

Extended practice

1 a Helsinki, Montreal, Quebec, Moscow b Berlin
c $-5^{\circ} \mathrm{C}$
d Montreal and Sydney (-6° and 27°), Helsinki and Acapulco (-3° and 30°), Quebec and Melbourne (-7° and 26°)

2

INTERNATIONAL BIG BANK			
Date	Paid in	Paid out	Balance
\$			
\$			

3 a \$-100
b Teacher to check, e.g. it would be more than $\$ 90$ because there would be interest payable on the amount owing.

Unit 1: Topic 11

Guided practice
1 Multiplication Base number and exponent

a	$2 \times 2 \times 2 \times 2 \times 2$	2^{5}
b	$4 \times 4 \times 4$	4^{3}
c	$8 \times 8 \times 8 \times 8$	8^{4}
d	$5 \times 5 \times 5 \times 5 \times 5$	5^{5}
e	$7 \times 7 \times 7 \times 7 \times 7 \times 7$	7^{6}
f	$10 \times 10 \times 10 \times 10$	10^{4}

| 2 | Base number
 and exponent | Number of times the base number is
 used in a multiplication | Multiplication | Value of the number |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a | 3^{3} | three times | $3 \times 3 \times 3$ | 27 |
| b | 2^{4} | four times | $2 \times 2 \times 2 \times 2$ | 32 |
| c | 5^{3} | three times | $5 \times 5 \times 5$ | 125 |
| d | 6^{2} | two times | 6×6 | 36 |
| e | 9^{2} | two times | 9×9 | 81 |
| f | 10^{3} | three times | $10 \times 10 \times 10$ | 1000 |

3		Starting number	What number multiplied by itself makes the number?	Square root of the starting number
a	4	$2 \times 2=4$	4	Number fact

4	Starting number	Which two square numbers is it between?	What are their square roots?	The square number is between
a 10 9 and 16 $\sqrt{9}=3$ and $\sqrt{ } 16=4$ 3 and 4 b 42 36 and 49 $\sqrt{36}=6$ and $\sqrt{ } 49=7$ 6 and 7 c 20 16 and 25 $\sqrt{ } 16=4$ and $\sqrt{ } 25=5$ 4 and 5 d 52 49 and 64 $\sqrt{ } 49=7$ and $\sqrt{ } 64=8$ 7 and 8				

Independent practice

$\begin{array}{rl} 1 & \mathrm{a} \\ & \mathrm{c} \\ & \mathrm{e} \end{array}$	$\begin{aligned} & 2^{7}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2= \\ & 3^{6}=3 \times 3 \times 3 \times 3 \times 3 \times 3=729 \\ & 7^{4}=7 \times 7 \times 7 \times 7=2401 \end{aligned}$		b $5^{5}=5 \times 5 \times 5 \times 5 \times 5=3125$ d $4^{5}=4 \times 4 \times 4 \times 4 \times 4=1024$	
2 a	$8^{5}: 9^{4}=6561$ and $8^{5}=32768$		b $3^{5}: 5^{3}=125$ and $3^{5}=243$	
3 a	$5^{6}=15625$		b $10^{6}=1000000$	
4	Starting number	The approximate square root is between	Actual square root (to two decimal places)	Number fact
	5	2 and 3	2.24	$\sqrt{5}=2.24$
	40	6 and 7	6.32	$\sqrt{ } 40=6.32$
	14	3 and 4	3.74	$\sqrt{ } 14=3.74$
	30	5 and 6	5.48	$\sqrt{ } 30=5.48$
	99	9 and 10	9.95	$\sqrt{ } 99=9.95$

Extended proctice

1 a $5 \wedge 2=25$
b $3 \wedge 4=81$
c $10 \wedge 4=10000$
d $1 \wedge 10=1$
2 Teachers may wish to discuss with students an appropriate number of decimal places that are needed.
a $8^{-1}=1 \div 8=0.125$
b $8^{-2}=1 \div 8 \div 8=0.015625$
c $4^{-1}=1 \div 4=0.25$
d $4^{-2}=1 \div 4=0.25 \div 4=0.0625$
e $10^{-2}=1 \div 10=0.1 \div 10=0.01$
f $10^{-3}=1 \div 10=0.1 \div 10=$ $0.01 \div 10=0.001$
3 This is a useful discussion point. For square numbers, the method of saying "multiplied by itself" works. However, for higher exponents, such as the power of 4 , it is not correct to say, " $3^{4}=3$ times itself 4 times"
because this could be confused with 3×3 $\times 3 \times 3 \times 3$.
3×3 (first time) $=9, \times 3$ (second time) $=$ $27, \times 3$ (third time) $=81, \times 3$ (fourth time) $=243.3^{4}=81$. If dealt with correctly, 3^{4} is seen as the base number (4) being used in a multiplication 4 times: $3 \times 3 \times 3 \times 3=81$.
Advanced student should, therefore, see 6^{3} as the opposite of 6^{-3} in which 1 is divided by 6 three times $(1 \div 6 \div 6 \div 6)$. Therefore, 6^{3} can be written as 1 multiplied by 6 three times ($1 \times 6 \times 6 \times 6$).
a $6^{3}=1 \times 6 \times 6 \times 6=216$ (compare with $6 \times 6 \times 6=216)$
b $4^{4}=1 \times 4 \times 4 \times 4 \times 4=256$ (compare with $4 \times 4 \times 4 \times 4=256$)
4 Some trial and error should lead students to see that the base number always remains the same when the exponent is 1 . The method in question 3 is a simple way to see this. For example, $5^{1}=1 \times 5=5$ and so on.

Unit 2: Topic 1

Guided practice

1 a one-sixth, $\frac{1}{6} \quad$ b three-fifths, $\frac{3}{5}$
c seven-tenths, $\frac{7}{10}$ d two-thirds, $\frac{2}{3}$
2 a $\frac{4}{16}$ or $\frac{1}{4} \quad$ b Student shades 4 stars.
3 a $\frac{9}{10}$
b Student draws a smiley face at the $\frac{3}{10}$ mark.
c $\frac{7}{10}$
d Student draws a triangle at the $\frac{6}{10}$ mark.
Independent practice
1 a $\frac{3}{6}, \frac{4}{8}, \frac{5}{10}, \frac{6}{12}$
b Any fraction that is equivalent to $\frac{1}{2}$, e.g. $\frac{7}{14}, \frac{8}{16}$ etc.

2 The answers below are ones that students can identify from the fraction wall. However, there are other possibilities, such as $\frac{2}{10}=\frac{4}{20}$.
a $\frac{1}{5}$
b $\frac{2}{12}$
c $\frac{1}{4}$
d $\frac{10}{12}$
e $\frac{8}{10}$
f Any or all of $\frac{1}{3}, \frac{2}{6}$ and $\frac{4}{12}$
3 a $\frac{2}{3}$
b $\frac{8}{10}$
d $\frac{6}{9}$
e $\frac{8}{12}$
C $\frac{6}{8}$

4 There are several possible correct responses. One possibility is shown. Check that the equivalent fractions are correct and that the shading matches the fractions. a $\frac{6}{8}=\frac{3}{4}$
b $\frac{8}{10}=\frac{4}{5}$

5 Teacher to check shading and to decide how accurate students need to be with regard to dividing the shapes.
6 a $\frac{3}{12}$ (or any equivalent to $\frac{1}{4}$)
b $\frac{3}{4}$ (or any equivalent to $\frac{3}{4}$)
c Most likely answers are $\frac{1}{6}$ and $\frac{2}{12}$, but students could choose other equivalent fractions.
d Student draws a star at the $\frac{8}{12}$ mark.

Extended proctice

| $\mathbf{1}$ | \mathbf{a} | $\div 4$ | \mathbf{b} | $\div 3$ | \mathbf{c} |
| ---: | :--- | :--- | :--- | :--- | :--- |$\div 2$

2 Teacher to check method. Below are probable solutions, but students may provide different answers, such as $\frac{4}{10}$ for 2 d :
a $\frac{2}{3} \quad$ b $\frac{3}{4} \quad$ c $\frac{1}{2}$
d $\frac{2}{5}$
e $\frac{1}{7}$
f $\frac{4}{5}$
g $\frac{1}{4}$
3 a $\frac{1}{2} \quad$ b $\frac{4}{5} \quad$ c $\frac{1}{3}$

a	$\frac{1}{2}$	b	$\frac{4}{5}$	c	$\frac{1}{3}$
d	$\frac{1}{3}$	e		f	$\frac{4}{5}$

Unit 2: Topic 2

Guided practice

1 a $\frac{4}{6}\left(\right.$ or $\left.\frac{2}{3}\right)$
b $\frac{8}{7}=1 \frac{1}{7}$
c $\frac{6}{4}=\frac{72}{8}\left(\right.$ or $\left.1 \frac{1}{2}\right)$
d $\frac{8}{10}$ (or $\frac{4}{5}$)
2 a $\frac{3}{8}+=\frac{5}{8}$
b $\frac{3}{4}-\frac{2}{4}=\frac{1}{4}$

Independent proctice

Extended practice

1 Students should convert all fractions to eighteenths: $\frac{5}{18}+\frac{4}{18}+\frac{3}{18}+\frac{6}{18}=\frac{18}{18}=1$
2 a $1 \frac{1}{2}$
$\begin{array}{llll}\text { b } & 2 \frac{5}{12} & \text { c } & 1 \\ \text { e } & 5 \frac{3}{4} & \text { f } & 1\end{array}$
d $1 \frac{3}{10}$
g $3 \frac{7}{12}$

3 Answers will vary. For example,
$\frac{1}{4}+\frac{1}{3}+\frac{5}{12}+\frac{1}{6}=\frac{14}{12}=1 \frac{1}{6}$.

Unit 2: Topic 3

Guided practice

1 a $\frac{3}{100}$ or $0.03 \quad$ b $\frac{69}{100}$ or 0.69
c $\frac{20}{100}\left(\frac{2}{10}\right)$ or $0.20(0.2)$ (Discuss the connection with students.)

$\mathbf{2}$	\mathbf{a}	2	\mathbf{b}	8	\mathbf{c}	125
\mathbf{d}	200	\mathbf{e}	75	\mathbf{f}	9	
\mathbf{g}	99	\mathbf{h}	999	\mathbf{i}	1	
	\mathbf{j}	10	\mathbf{k}	100	\mathbf{l}	250

Independent proctice

1 Student shades:

a	5 squares		b 35 squares			
c	33 squares		$\mathbf{d} 90$		squares	
a	True	b	False	c	True	
d	False	e	True	f	True	
g	False	h	True	i	True	
j	False	k	False	I	True	

3 Student shades:
a 15 squares red b 5 squares yellow
c 45 squares blue d 10 squares green
e Unshaded amount is $\frac{1}{4}$ or 0.25 .
$40.045,0.145,0.415,0.45,0.451$

| \mathbf{a} | $\frac{3}{4}$ | 0.75 |
| :--- | :--- | :--- | :--- |
| \mathbf{b} | $\frac{1}{10}$ | 0.1 |
| \mathbf{c} | $\frac{3}{10}$ | 0.30 |
| \mathbf{d} | $\frac{9}{100}$ | 0.09 |
| \mathbf{e} | $\frac{405}{1000}$ | 0.405 |
| \mathbf{f} | $\frac{250}{1000}$ | $0.25(0)$ |
| \mathbf{g} | $\frac{99}{100}$ | 0.099 |
| \mathbf{h} | $\frac{1}{100}$ | 0.01 |

6	Improper fraction	Mixed number	Decimal
a	$\frac{7}{4}$	$1 \frac{3}{4}$	1.75
b	$\frac{13}{10}$	$1 \frac{3}{10}$	1.3
c	$\frac{125}{100}$	$1 \frac{25}{100}$	1.25
d	$\frac{450}{100}$	$4 \frac{50}{100}$ (or equivalent)	4.5
e	$\frac{275}{100}$	$2 \frac{75}{100}$ (or equivalent)	2.75
f	$\frac{1250}{1000}$	$1 \frac{250}{1000}$ (or equivalent)	1.25

Extended practice

$\mathbf{1}$	\mathbf{a}	0.1	\mathbf{b}	0.25	\mathbf{c}	0.7
	\mathbf{d}	$\frac{1}{100}$	e	$\frac{3}{4}$	\mathbf{f}	$\frac{1}{1000}$
$\mathbf{2}$	\mathbf{a}	0.2	\mathbf{b}	0.125	\mathbf{c}	0.75
	\mathbf{d}	0.375	e	0.8	\mathbf{f}	0.875

30.33 recurring $\quad 40.1 \dot{6}$

5 Teacher to check rounding. To 3 decimal places, 0.1428 becomes 0.143

Unit 2: Topic 4

Guided practice

1 a 4166
b 41.66
$\begin{array}{llll}\mathbf{2} & \mathbf{a} & 45.2 & \text { b }\end{array} 4.37$ d 52.3 e 1.75

Independent proctice

$\mathbf{1}$	\mathbf{a}	6.02	\mathbf{b}	9.36	c	63.936
	\mathbf{d}	50.1	e	1.55	f	7.593
	\mathbf{g}	2.21	h	9.9	i	17.415
$\mathbf{2}$	\mathbf{a}	$\$ 171.14$		\mathbf{b}	$\$ 80.05$	
$\mathbf{3}$	a	54.91 m		b	2.287 kg	
$\mathbf{4}$	d	8.253 seconds				
$\mathbf{5}$	33.92 m					
$\mathbf{6}$	10 kg					
$\mathbf{7}$	8.61 m					

Extended practice

1 Answers will vary, e.g. $0.2+4.62+4.36=$ 9.18 or $0.9+4.92+3.36=9.18$

2 a

Organ	Mass
skin	10.886 kg
liver	1.56 kg
brain	1.408 kg
lungs	1.09 kg
heart	0.315 kg
kidneys	0.29 kg
spleen	0.17 kg
pancreas	0.098 kg

b $1.405 \mathrm{~kg} \quad$ c 9.478 kg d heart
e Teacher to check but the right must be 0.07 kg heavier and the two masses must be close (e.g. right: 0.58 kg , left: 0.51 kg)
f $0.992 \mathrm{~kg} \quad$ g $\quad 0.943 \mathrm{~kg}$

Unit 2: Topic 5

Guided practice

Independent proctice

1	a	44.1	b	85.6	c	63(.0)
	d	91.5	e	8.64	f	10.36
	g	8.1	h	7.71	i	51.8
	j	864.2	k	7.725	I	95.13
2	a	5.3	b	12.1	c	12.4
	d	19.5	e	1.05	f	2.37
	g	3.19	h	12.1	i	14.38
	j	12.47	k	2.57	1	0.527
3	a	174.4	b	327.6	c	36.95
	d	128.01	e	324.24	f	29.824
	g	722 (.0)	h	558.45	i	40.175
4	a	\$2 b	\$4	c $\$ 7.95$		d \$19.90
5	a	\$1 b	\$1.60	c \$3		d $\$ 1.25$

Extended proctice

Look for the strategies the student uses to solve these problems. Discuss whether mental strategies would be more appropriate in some cases.
$1 \$ 84.55$
$260 \mathrm{~cm}(0.6 \mathrm{~m})$
3 \$62.50
4 a

Item	Cost
Soft drink $(1.25 \mathrm{~L})$	$\$ 6.75$
Juice $(300 \mathrm{~mL})$	$\$ 5.04(\$ 5.05)$
Potato crisps $(50 \mathrm{~g})$	$\$ 16.20$
Chocolate $(150 \mathrm{~g})$	$\$ 9.86(\$ 9.85)$
Melon	$\$ 3.84(\$ 3.85)$
Pies $(4$ in a pack)	(Two packs of four pies are needed for 6 students.) $\$ 16.08(\$ 16.10)$

b $\$ 57.80$ if items are rounded or $\$ 57.77$ without rounding. This would then be rounded to \$57.75.
c 64 cents (round to 65 cents)
d $\$ 57.80 \div 6=\$ 9.65$ (rounded) $\$ 57.77 \div 6=\$ 9.65$ (rounded)
e $\$ 57.80 \times 4=\$ 231.20$ $\$ 57.77 \times 4=\$ 231.08$ ($=\$ 231.10$ rounded)

Unit 2: Topic 6

Guided proctice	
1 a 450	b 45
2 a 740	b 74
3 a 3750	b 375
4 a 6290	b 629
5 a 35	b 3.5
6 a 74	b 7.4
7 a 87	b 8.7
8 a 93	b 9.3
9 a 326	b 23.5
c 78.92	d 652
10 a 2.35	b 4.275
c 0.35	d 0.02

Independent proctice

1 a	35		b 350	
2 a	67		b 670	
3 a	53.8		b 538	
4 a	40.9		b 409	
5 a	0.45		b 0.045	
6 a	0.79		b 0.079	
7 a	5.45		b 0.545	
8 a	6.27		b 0.627	
9 a	245		b 1737	
10 a	34.161	b	0.001	
11 a	1300	b	2600	c 3570
d	1270	e	15470	f 72950
g	96300	h	25400	
12 a	0.432	b	0.529	c 0.841
d	0.697	e	1.485	f 3.028
g	10.436	h	99.999	
13		$\times 10$	$\times 100$	$\times 1000$
a	1.7	17	170	1700
b	22.95	229.5	2295	22950
c	3.02	30.2	302	3020
d	4.42	44.2	442	4420
e	5.793	57.93	579.3	5793
f	21.578	215.78	2157.8	21578
g	33.008	330.08	3300.8	33008
h	29.005	290.05	2900.5	29005

$\mathbf{1 4}$		$\div 10$	$\div 100$	$\div 1000$
\mathbf{a}	74	7.4	0.74	0.074
\mathbf{b}	7	0.7	0.07	0.007
\mathbf{c}	18	1.8	0.18	0.018
d	325	32.5	3.25	0.325
\mathbf{e}	2967	296.7	29.67	2.967
\mathbf{f}	3682	368.2	36.82	3.682
\mathbf{g}	14562	1456.2	145.62	14.562
\mathbf{h}	75208	7520.8	752.08	75.208

Extended practice

$1225 \times 4 \div 1000$
2 a $0.936(312 \times 3=936$ Divide 936 by $1000=0.936$)
b $9.36(312 \times 3=936$.
Divide 936 by $100=9.36$)
c $0.609(203 \times 3=609$.
Divide 609 by $1000=0.609$)
d $8.004(4002 \times 2=8004$.
Divide 8004 by $1000=8.004$)

32500 (Five jumps would get to one. 50 jumps would get to 10,500 jumps would get to 100 so 2500 jumps would get to 500 .)
4 a $600 \quad$ b $750 \quad$ c 1000
d $250(150 \div 0.6)$
5 a $\$ 132.948$ (rounded $=\$ 132.95$)
b $\$ 13294.80$
c $\$ 1329.48$ (rounded price $=\$ 1329.50$)

Unit 2: Topic 7

Guided practice

1 a $\frac{9}{100}, 0.9,9 \%$
b $\frac{99}{100}, 0.99,99 \%$
c $\frac{80}{100}\left(\frac{8}{10}\right.$ or $\left.\frac{4}{5}\right), 0.8,80 \%$
d $\frac{25}{100}\left(\frac{1}{4}\right), 0.25,25 \%$
e $\frac{50}{100}\left(\frac{1}{2}\right), 0.5,50 \%$
f $\frac{75}{100}\left(\frac{3}{4}\right), 0.75,75 \%$
2 a $0.02,2 \%$, student shades 2 squares
b $\frac{20}{100}\left(\frac{1}{5}\right), 20 \%$, student shades 20 squares
c $\frac{35}{100}\left(\frac{7}{20}\right), 0.35$, student shades 35 squares
d $0.7,70 \%$, student shades 70 squares
Independent proctice

a	Fraction	Decimal	Percentage
a	$\frac{15}{10}$ (or equivalent)	0.15	15%
b	$\frac{22}{100}$ (or equivalent)	0.22	22%
c	$\frac{6}{10}$ (or equivalent)	0.6	60%
d	$\frac{9}{100}$	0.09	9%
e	$\frac{9}{10}$	0.9	90%
f	$\frac{53}{100}$	0.53	53%
\mathbf{g}	$\frac{1}{2}$ (or equivalent)	0.5	50%
h	$\frac{1}{4}$	0.25	25%
i	$\frac{4}{10}$ (or equivalent)	0.04	4%
j	$\frac{3}{4}$	0.75	75%
k	$\frac{1}{5}$	0.2	20%

2 a True b True c False

\mathbf{d}	True	\mathbf{e}	False	\mathbf{f}
g	False	False		
\mathbf{a}	True	\mathbf{i}	True	

3 a $20 \%, \frac{1}{4}, 0.3 \quad$ b $0.07, \frac{6}{10}, 69 \%$
c $\frac{2}{100}, 17 \%, 0.2$ d $4 \%, 0.14, \frac{1}{4}$
e $10 \%, \frac{1}{5}, 0.5$
f $\frac{3}{10}, 39 \%, 0.395$
4 Matching sets are:

- $5 \%, 0.05, \frac{1}{20}$
- $8 \%, 0.08$ and $\frac{8}{100}$
- $80 \%, 0.8$ and $\frac{8}{10}$

5 Percentages: $10 \%, 30 \%, 60 \%, 75 \%, 95 \%$ Fractions: $\frac{1}{10}, \frac{1}{4}, \frac{3}{4}, \frac{9}{10}$ (or equivalents)
6 a 5%
b 22%
c 44% d 59% e 72% f 99%

7 Student draws smiley face and arrow pointing to the point approximately mid-way between 0.8 and 0.9.
8 a Triangle: 30% b Star: 40% c Circle: 70% d Hexagon: 90%

Extended practice

12% of the world's cattle is in Australia.
$2 \frac{4}{5}$ of Australian mammal species are found nowhere else in the world.

3 The population of Victoria was approximately $5 \frac{1}{2}$ million people in 2009.
415% of the sheep in the Top 10 sheep countries are in Australia.
5 The Great Sandy Desert covers onetwentieth of Australia.
6 About 13\% of the world's threatened animal species are in Australia.

Unit 3: Topic 1

Guided practice

$\mathbf{1}$	a	$8: 4$	\mathbf{b}	$3: 6$	c	$9: 3$
$\mathbf{2}$	a	$2: 1$	\mathbf{b}	$1: 2$	c	$3: 1$
	\mathbf{d}	$1: 4$	e	$2: 1$	\mathbf{f}	$5: 1$
	g	$1: 3$				

Independent proctice

$\begin{array}{lllllll}\mathbf{1} & \mathbf{a} & \mathbf{9} & \mathbf{b} & 15 & \mathbf{c} & 24\end{array}$

2	\mathbf{a}	6	\mathbf{b}	10	\mathbf{c}

$\begin{array}{llllll}3 & \text { a } & 1: 3: 5 & \text { b } 1: 3: 2 & \text { c } 2: 3: 1\end{array}$
4 Students should recognise that the ratio of $3: 1: 2$ means that there should be 3 blue squares for each yellow square and every 2 green squares. The simplest solution is to follow this pattern. However, students may choose to colour any 12 squares blue, any 4 squares yellow and any 8 squares green.
5 a Look for students who use appropriate vocabulary, such as, "For every yellow bead there are 3 red beads and 4 blue beads." By this stage, students should be beyond simply counting the number of beads in each colour.
b $1: 3: 4$
6 a \& b Students might see that they can substitute the yellow beads in question 5 for green and continue the pattern. In this case, they could describe the pattern in the following way: "For every green bead there are 3 red beads and 4 blue beads." The ratio would be 1:3:4. Students requiring a greater challenge can be encouraged to use a different ratio, such as 1:2:5, with 3 green beads, 6 red beads and 15 blue beads.

| 7 | Flour | Milk | Eggs |
| :--- | :--- | :--- | :--- | | Number of |
| :--- |
| pancakes |$|$| 120 g | 250 mL | 1 |
| :--- | :--- | :--- |
| 240 g | 500 mL | 2 |
| 480 g | 1000 mL or 1 L | 4 |
| 720 g | 1.5 L | 6 |
| 60 g | 125 mL | $\frac{1}{2}$ |

8 a Students who have had experience if finding the highest common factor of a set of numbers will use this skill to work out the ratio of the animals as 3:8:1:2. Others will probably use a process of trial and error.
b Having worked out the ratio, students should see that Zoe has 4 ducks, 6 sheep, 16 goats and 2 horses.

Extended practice

1 a $\frac{3}{4}$
b 75\%
c 0.75

2 Students may need to revisit the procedure for finding a fraction of a quantity where the numerator is larger than 1.
a 2 oranges, 8 apples
b 5 oranges, 20 apples
c 10 oranges, 40 apples
d 7 oranges, 28 apples
3 a There are five "portions" and each portion is one-fifth. One-fifth of 45 pieces of fruit is 9 pieces of fruit ($45 \div 5=9$). So, $3 \times 9=27$ oranges and $2 \times 9=18$ apples.
b There are seven "portions" and each portion is one-seventh. One-seventh of 56 pieces of fruit is 8 pieces of fruit ($56 \div 7=8$). So, $3 \times 8=24$ oranges and $4 \times 8=32$ apples.
c There are four "portions" and each portion is one-quarter. One-quarter of 32 pieces of fruit is 8 pieces of fruit ($32 \div 4=8$). So, $1 \times 8=8$ oranges and 3×8 apples $=24$ apples.
d There are eight "portions" and each portion is one-eighth. One-eighth of 72 pieces of fruit is 9 pieces of fruit ($72 \div 8=9$). So, $3 \times 9=27$ oranges and 5×9 apples $=45$ apples .

Unit 4: Topic 1

Guided practice

1 a $4 \times 5=20 \quad$ b $6 \times 4=24$

 Rule: Subtract 0.5
3 a Yes (because 24 is divisible by 4).
b Yes (because 16 is divisible by 4).
c No (because 42 is not divisible by 4).
4 Teacher to check, e.g. Is the last digit even?

Independent practice

1 Teacher to check, e.g. because only 3 sticks are needed for each square after the first one.

2
Number of sticks
a $1+4 \times 3=12 \times 1=13$
b $1+6 \times 3=1+18=19$
c $1+8 \times 3=1+24=25$
3 True
4 Teacher to check, e.g.
a You use 3 sticks for every triangle.
b You start with 1 stick and then use 2 sticks for every triangle or start with 3 sticks for the first triangle and then use 2 for every other triangle.
c You use 6 sticks for every hexagon.
d You start with 1 stick and then use 5 sticks for every hexagon or start with 6 sticks for the first hexagon and then use 5 for every other hexagon.

| Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Number | 2 | 5 | 8 | 11 | 14 | 17 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 23 | 26 | 29 | | | | | |

6 | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 |

Rule: Teacher to check, e.g. to find the number, you square the position number or to find the number, you multiply the position number by itself.
7 Depending on the experience and ability levels of the students, teachers may wish to discuss and work through the flow chart and model an example to show how the chart works. The division examples allow for various pathways through the flow chart.
a 114 r 2
b 137
c 86 r 1

8 Teachers may wish to use this activity as a cooperative group activity. The flow chart is a basic one. A successfully completed chart may look like this:

Extended practice

1 Teachers may wish to discuss the use of a formula in order to simplify a rule before students start this work.
a 32
b 40
c 80
d 200

2 a 10
b $n=2+t \times 2$ or $n=t \times 2+2$ (because, apart from the two end tables, only two sides of each rectangle can be used). Note, the above formulae follow the pattern of the other formulae in this topic. However, other formulae are possible, such as $n=6+(t-2) \times 2$. Teacher to decide whether discussion on this is appropriate.
c a) 18 ; b) 22 ; c) 42 ; d) 102
$\begin{array}{lllllll}\mathbf{3} & \mathbf{a} & 7 & \mathbf{b} & 9 & \mathbf{c} & 12\end{array} \mathbf{d} 22$
4 a Teacher to check formula, e.g. $n=t+2$ or $n=2+t$ (because, apart from the two end tables, only one side of each triangle can be used). See also note in question 2 b .
b 22

Unit 4: Topic 2

Guided practice

117

2	a	7		b 10	c	21
	d	6		e 4	f	8
	g	14		h 10		
3	a	12		b 12	c	6
	d	$4 \frac{1}{2}$		e 21	f	29
	g	12	h	36		
4	a	15		b 10	c	8
	d	2		e 100	f	18
	g	20		h 30		

Independent practice

1 a $5 \times 2=2+8$
b $5 \times 5=30-5$
c $24 \div 2=4 \times 3$
d $20+7=(4+5) \times 3$
e $\frac{1}{2}$ of $6+5=24 \div 3$

2	Problem		Split the problem to make it simpler		Solve the problem		Answer
e.g.	27×3	$=$	$(20 \times 3)+(7 \times 3)$	=	$60+21$	$=$	81
a	23×4	$=$	$(20 \times 4)+(3 \times 4)$	$=$	$80+12$	$=$	92
b	19×7	$=$	$(10 \times 7)+(9 \times 7)$	=	$70+63$	$=$	133
c	48×5	$=$	$(40 \times 5)+(8 \times 5)$	=	$200+40$	$=$	240
d	37×6	$=$	$(30 \times 6)+(7 \times 6)$	$=$	$180+42$	$=$	222
e	29×5	$=$	$(20 \times 5)+(9 \times 5)$	$=$	$100+45$	$=$	145
f	43×7	$=$	$(40 \times 7)+(3 \times 7)$	$=$	$280+21$	=	301
g	54×9	$=$	$(50 \times 9)+(4 \times 9)$	$=$	$450+36$	$=$	486

3	Problem		Change the order to make it simpler		Solve the problem		Answer
e.g.	$20 \times 17 \times 5$	=	$20 \times 5 \times 17$	$=$	100×17	=	1700
a	$20 \times 13 \times 5$	$=$	$20 \times 5 \times 13$	=	100×13	=	1300
b	$25 \times 14 \times 4$	$=$	$25 \times 4 \times 14$	=	100×14	=	1400
c	$5 \times 19 \times 2$	$=$	$5 \times 2 \times 19$	$=$	10×19	=	190
d	$25 \times 7 \times 4$	$=$	$25 \times 4 \times 7$	=	100×7	=	700
e	$60 \times 12 \times 5$	$=$	$60 \times 5 \times 12$	=	300×12	=	3600
f	$5 \times 18 \times 2$	=	$5 \times 2 \times 18$	=	10×18	=	180
g	$25 \times 7 \times 8$	$=$	$25 \times 8 \times 7$	$=$	200×7	$=$	1400

4	Problem	Use opposites	Find the value of 0	Check by writing the equation
e.g.	$\diamond+15=35$	$\diamond=35-15$	$\diamond=20$	$20=35-15$
a	$\diamond \times 6=54$	$\diamond=54 \div 6$	$\diamond=9$	$9 \times 6=54$
b	$\diamond+1.5=6$	$\diamond=6-1.5$	4.5	$4.5+1.5=6$
c	$\frac{1}{4}$ of $\diamond=10$	$\diamond=10 \times 4$	40	$\frac{1}{4}$ of $40=10$
d	$\diamond \times 10=45$	$\diamond=45 \div 10$	4.5	$4.5 \times 10=45$
e	$\diamond \div 10=3.5$	$\diamond=3.5 \times 10$	35	$35 \div 10=3.5$
f	$\diamond \div 4=1.5$	$\diamond=1.5 \times 4$	6	$6 \div 4=1.5$
g	$\diamond \times 100=725$	$\diamond=725 \div 100$	7.25	$7.25 \times 100=725$

5	Problem	Possible substitutes for \bullet				
e.g.	$\nabla^{2} \times 3=75$	4	5	6	7	$5^{2} \times 3=25 \times 3=75$
a	$\diamond \times 3+5=32$	8	9	10	11	$9 \times 3+5=32$
b	$54 \div \diamond-5=1$	9	10	11	12	$54 \div 9-5=1$
c	$2 \times \diamond+5=15$	2	3	4	5	$2 \times 5+5=15$
d	$15 \div \diamond-1.5=0$	5	10	15	20	$15 \div 10-1.5=0$
e	$24 \times 10-\diamond=228$	12	14	16	18	$24 \times 10-12=228$
\mathbf{f}	$\diamond \div 2=4^{2}+3$	35	36	37	38	$38 \div 2=16+3$
\mathbf{g}	$(5+\diamond) \times 10=25 \times 3$	1.5	2	2.5	3	$(5+2.5) \times 10=75$

Extended practice

1 a $\diamond \times 3-4=11, \diamond \times 3=11+4, \diamond=15 \div$ $3,0=5$
b $\diamond \times 10-15=19, \diamond \times 10=19+15, \Delta \times$ $10=34, \Delta=34 \div 10, \Delta=3.4$

2 a 16
b Answers may vary, e.g. $(10+2) \times 4-2$ $=46$ or $10+2 \times 4-2=16$
c Answer will depend on the calculator used. Most basic calculators will not be programmed to follow the order of operations and will give the answer 46.
d Teacher to check, e.g. $(10+2) \times 4-2$ $=46,10+2 \times(4-2)=14,(10+2) \times$ $(4-2)=24$
3 Answers will vary, e.g. $4-4+4-4=0 ;(4 \div$ $4-4)+4=1 ; 4 \div 4+4 \div 4=2 ;(4+4+4) \div$ $4=3 ;(4-4) \times 4+4=4 ;(4 \times 4+4) \div 4=5$; $(4+4) \div 4+4=6 ; 4+4-4 \div 4=7 ; 4-4+$ $4+4=8 ; 4 \div 4+4+4=9$

Unit 5: Topic 1

Guided proctice

4 km	4000 m
7 km	7000 m
19 km	19000 m
6 km	6000 m
7.5 km	7500 m
3.5 km	3500 m
4.25 km	4250 m
9.75 km	9750 m

2 | 1 m | 100 cm |
| :--- | :--- |
| 4 m | 400 cm |
| 5.5 m | 550 cm |
| 2.5 m | 250 cm |
| 7.1 m | 710 cm |
| 8.2 m | 820 cm |
| 1.56 m | 156 cm |
| 0.75 m | 75 cm |

5	5 cm
42 cm	50 mm
9 cm	920 mm
3.2 cm	32 mm
7.5 cm	75 mm
12.5 cm	125 mm
12.4 cm	124 mm
9.9 cm	99 mm

4 Teacher to check and possibly ask student to justify answers.
a cm or mm
b cm
c mm
d m
e morcm
f km

Independent proctice

1 Answers may vary. Teachers could ask students to justify answers.

a	The length of a pencil	157 mm	15.7 cm
\mathbf{b}	The height of a Year 6 student	1.57 m	157 cm
c	The length of a finger nail	15 mm	1.5 cm
d	The distance around a school yard	157 m	0.157 km
e	The length of a bike ride	1570 m	1.57 km

$\mathbf{2}$		mm	cm and mm
\mathbf{a}	45 mm	4 cm 5 mm	4.5 cm
\mathbf{b}	75 mm	7 cm 5 mm	7.5 cm
c	82 mm	8 cm 2 mm	8.2 cm
d	69 mm	6 cm 9 mm	6.9 cm

3 Teacher to check. Note: accuracy in measuring is less important than the ability to convert between the units of length.
4 a Teacher to check estimates. Look for estimates expressed in the correct unit and that are reasonable in comparison with the length of Line B.
b Line A: 6.8 cm , Line C: 9.2 cm
5 a Teacher to check estimates. Look for estimates that are reasonable given the length of Line B.
b All lines are 6 cm long
c Teacher may choose to discuss optical illusions. This particular optical illusion is called the Müller-Lyer illusion and there are various theories as to why we perceive the lines as different in length.
6 Allow for a tolerance of $+/-4 \mathrm{~mm}$ per rectangle and 3 mm for the triangle. Allow equivalent lengths.
a 10 cm
b 11.6 cm
c 9.2 cm
d 6.3 cm

7 Teacher to check.

Extended practice

Tyrannosaurus Rex	12.8 m	2
Iguanodon	6800 mm	3
Microraptor	0.83 m	6
Homalocephale	290 cm	5
Saltopus	590 mm	7
Puertasaurus	3700 cm	1
Dromiceiomimus	3500 mm	4
Micropachycephalosaurus	50 cm	8

2 Answers will vary. Look for students who come up with a plausible suggestion such as a dog or a cat.
3 Puertasaurus
4 Answers will vary, e.g. about 26 ($37 \div 1.4=26.43$). Look for students who can make a reasonable estimate of the height of Year 6 students and use this to come up with a plausible response
5 Answers will vary. Look for students who are able to make a reasonable estimate of their own height and to accurately calculate the difference between their given height and that of the microraptor.

6 Teacher to check and decide on level of accuracy that is required. Looking at problem-solving strategies may be seen to be more important than absolute accuracy.

Unit 5: Topic 2

Guided proctice

$18 \mathrm{~cm}^{2}$
$212 \mathrm{~cm}^{2}$
$310 \mathrm{~cm}^{2}$
4 a 2
b 2
c $4 \mathrm{~cm}^{2}$
5 a $2 \mathrm{~cm}^{2}$
b $9 \mathrm{~cm}^{2}$
c $18 \mathrm{~cm}^{2}$

Independent practice

1 a $\mathrm{L}: 3 \mathrm{~cm}, \mathrm{~W}: 2 \mathrm{~cm}, \mathrm{~A}: 6 \mathrm{~cm}^{2}$
b $L: 3 \mathrm{~cm}, W: 5 \mathrm{~cm}, A: 15 \mathrm{~cm}^{2}$
2 a $40 \mathrm{~m}^{2}$ b $63 \mathrm{~m}^{2}$ c $150 \mathrm{~m}^{2}$
3 a $21 \mathrm{~m}^{2}$ b $56 \mathrm{~m}^{2}$ c $24 \mathrm{~m}^{2}$
4 Students' own answer. Look for students who show an understanding of why the formula would not work, e.g. because the shape is not a rectangle.
5 a $20 \mathrm{~cm}^{2}$ b $25 \mathrm{~cm}^{2}$ c $18 \mathrm{~cm}^{2}$ d $16 \mathrm{~cm}^{2}$ e $16 \mathrm{~cm}^{2}$
$65000 \mathrm{~m}^{2}$
7 a $20000 \mathrm{~m}^{2}$ b $40000 \mathrm{~m}^{2}$
c $50000 \mathrm{~m}^{2}$
$830 \mathrm{~cm} \times 21 \mathrm{~cm}=630 \mathrm{~cm}^{2}$

Extended proctice

1 a $A B C D=20 \mathrm{~cm}^{2}, A B C=10 \mathrm{~cm}^{2}$
b $\mathrm{EFGH}=18 \mathrm{~cm}^{2}$, $\mathrm{EFG}=9 \mathrm{~cm}^{2}$
c $I J K L=21 \mathrm{~cm}^{2}, \mathrm{JKL}=10.5\left(10 \frac{1}{2}\right) \mathrm{cm}^{2}$
d $\mathrm{MNOP}=16 \mathrm{~cm}^{2}, \mathrm{NOQ}=8 \mathrm{~cm}^{2}$
2 a $12 \mathrm{~cm}^{2}$
b $7.5\left(7 \frac{1}{2}\right) \mathrm{cm}^{2}$
c $12.5\left(12 \frac{1}{2}\right) \mathrm{cm}^{2}$

Unit 5: Topic 3

Guided practice

1	\mathbf{a}	$8 \mathrm{~cm}^{3}$
\mathbf{c}	$12 \mathrm{~cm}^{3}$	b $16 \mathrm{~cm}^{3}$
$\mathbf{2}$	\mathbf{a}	$12 \mathrm{~cm}^{3}, 3,36 \mathrm{~cm}^{3}$
	d $12 \mathrm{~cm}^{3}$	
	b	$8 \mathrm{~cm}^{3}, 2,16 \mathrm{~cm}^{3}$

3 a

a	3 kL	3000 L
	9 kL	9000 L
	3.5 kL	3500 L
	6.25 kL	6250 L
b	2L	2000 mL
	7 L	7000 mL
	5.75 L	5750 mL
	4.5 L	4500 mL
c	$500 \mathrm{~cm}^{3}$	500 mL
	$225 \mathrm{~cm}^{3}$	225 mL
	$1000 \mathrm{~cm}^{3}$	1 L
	$1750 \mathrm{~cm}^{3}$	1750 mL or 1.75 L

Independent practice

1 a 15 b $15 \mathrm{~cm}^{3}$
2 Teacher to check. Look for students who are able to find the correct answer using a reliable strategy, e.g. because $6 \mathrm{~cm}^{3}$ would fit on the top layer and there are two layers the same.
3 Teacher to check, e.g. you multiply the width by the length to find the number of cubes that will fit on the one layer and then multiply that by the height to find the volume. (V $=L \times W \times H)$
4 a $40 \mathrm{~cm}^{3}$ b $18 \mathrm{~cm}^{3}$ c $48 \mathrm{~cm}^{3}$ d $48 \mathrm{~cm}^{3}$ e $80 \mathrm{~cm}^{3}$ f $180 \mathrm{~cm}^{3}$
5 B, C, A, D, F, G, E
6 a 1400 mL b 1500 mL c 1300 mL d 1250 mL e 750 mL f 1350 mL Teacher to check that the shading is appropriate.

Extended proctice

1 The most likely answer is millimetres. Students could be asked to justify their responses.
$230 \mathrm{~m} \times 3 \mathrm{~m} \times 0.15 \mathrm{~m}=13.5 \mathrm{~m}^{3}$.
3 Teacher to check. Look for students who are able to accurately follow the directions and who make the link between volume and capacity to arrive at a plausible answer. Note: equipment in primary schools is not usually accurate enough to prove that 1 mL water has a volume of exactly $1 \mathrm{~cm}^{3}$. Teachers may choose to discuss this with students.

Unit 5: Topic 4

Guided practice

1 a	5 t	5000 kg
7.5 t	7500 kg	
	1250 kg	
	2355 kg	
	995 kg	

b \begin{tabular}{|l|l|}
\hline 3.5 kg \& 3500 g

\hline 4.5 kg \& 4500 g

\hline 0.85 kg \& 850 g

\hline 0.25 kg \& 250 g

\hline 3.1 kg \& 3100 g

\hline \& c | 5.5 g | 5500 mg |
| :--- | :--- |
| 3.75 g | 3750 mg |
| 1.1 g | 1100 mg |
| 0.355 g | 355 mg |
| 0.001 g | 1 mg |

\hline
\end{tabular}

2 a-d Multiple possible answers, e.g. a: a truck, b: a person, c: flour, d: a grain of salt. Look for students who make appropriate choices for each unit of mass and who can justify their answers.

3	kg and fraction	kg and decimal	kg and g
a	$3 \frac{1}{2} \mathrm{~kg}$	3.5 kg	3 kg 500 g
b	$2 \frac{1}{2} \mathrm{~kg}$	2.5 kg	2 kg 500 g
c	$3 \frac{1}{4} \mathrm{~kg}$	3.25 kg	3 kg 250 g
d	$4 \frac{7}{10} \mathrm{~kg}$	4.7 kg	$4 \mathrm{~kg} \mathrm{700g}$
e	$1 \frac{9}{10} \mathrm{~kg}$	1.9 kg	1 kg 900 g

Independent practice

1 a 1 kg 700 g (or equivalent)
b 4 kg 250 g (or equivalent)
c 850 g (or equivalent) (Allow a tolerance of $+/-10 \mathrm{~g}$)
2 Most likely answers are below. Look for students who can explain why they would choose the particular scale to find the mass of each item.
a Scale C
b Scale B
c Scale A
d Scale B or C
3 The scale has 50 g increments so the pointer should be between 900 and 950 . Teacher to decide on the required level of accuracy.

4 a B, A, C, D
b $\mathrm{A} \& \mathrm{~B}$ (exactly 5 t)
c $C \& D(5.945 t)$

5 Teacher to check. Look for students who are able to describe the relationship between the total mass of the pad and the mass of each sheet, e.g. find the mass of 100 sheets and divide the answer by 100 .
6 Check that the total equals 1.85 kg and also that the masses are appropriate. (For example, one item at 1.844 kg and the remaining six items at 1 g would not be appropriate.)
7 a 62.5 kg
b Twelve Year 6 students. $(12 \times 40 \mathrm{~kg}=$ $480 \mathrm{~kg}, 13 \times 40 \mathrm{~kg}=520 \mathrm{~kg}$)
8 Check that total equals 1 kg and also that the masses are appropriate. (For example, one mango at 985 g and the remaining three at 5 g would not be appropriate.)

Extended practice

1 Teacher to check. Look for students who are able to come up with a strategy that connects millilitres and grams and demonstrates their understanding of mass. It is unlikely for normal primary classroom equipment to be accurate enough to prove that 1 mL of water has a mass of 1 g . This could be a useful discussion point for students.
2 a potato crisps
b breakfast cereal has 40 mg more sodium. (However, students could be asked to consider the normal serving size.)
c $505 \mathrm{mg}(2 \times 135 \mathrm{mg}+55 \mathrm{mg}+180 \mathrm{mg})$
d 216 mg (Total $=2516 \mathrm{mg}$ less 2300 mg $=216 \mathrm{mg}$)

Unit 5: Topic 5

Guided practice

1 a $1: 20 \mathrm{pm}, 1320$
b $6: 48 \mathrm{pm}, 1848$
c Clock to show 2:42, 0242
d $11: 07 \mathrm{pm}, 2307$
e Clock to show 10:22, 10:22 pm
f 6:27 am, 0627
g Clock to show 10:35, 1035
h Clock to show 11:59, 11:59 pm

Independent practice

154 minutes
2 Train 8221
39 minutes
4 Train 8215
5 Because the train only stops there to pick up passengers.
655 minutes

7 年 | Station | Time |
| :--- | :--- |
| Southern Cross | 1630 |
| Footscray | 1638 |
| Werribee | 1656 |
| Little River | 1704 |
| Lara | 1710 |
| Corio | 1714 |
| North Shore | 1716 |
| North Geelong | 1720 |
| Geelong | 1724 |

91971 (allow 1972 at teacher's discretion)

Extended proctice

$\begin{array}{r} 1 \mathrm{a} \\ \mathrm{c} \end{array}$	b 2 hours 51 minutes	
$\begin{array}{r} 2 a \\ c \end{array}$	b Clock to show 3:26	
3	Departs Big Town	Arrives Small Town
Bus A	1208	1507
Bus B	1533	1832
Bus C	1954	2253

Unit 6: Topic 1

Guided practice

1 a regular hexagon
b irregular quadrilateral
c regular quadrilateral (square)
d irregular pentagon
e regular octagon
f regular pentagon
g irregular triangle
h irregular hexagon
2 It has five equal sides and some of the angles are the same size.

Independent practice

1 Teacher to check descriptions. For example:
a Equilateral triangle. All the angles are the same size. All the sides are the same length.
b Isosceles triangle. Two angles are the same size. Two sides are the same length.
c Right-angled scalene triangle. All the sides are different lengths. One angle is a right angle.
d Right-angled isosceles triangle. Two sides are the same length. One angle is a right angle.
e Scalene triangle. All sides are different lengths. All angles are different sizes.
2 Teacher to check descriptions. For example:
a Square. All the angles are right angles. All the sides are the same length.
b Trapezium. There are two obtuse angles. There is one pair of parallel sides.
c Rectangle. All the angles are right angles. Two pairs of sides are the same length.
d Parallelogram. There are two pairs of parallel sides. There are two obtuse and two acute angles.
e Rhombus. All the sides are the same length. There are two pairs of parallel sides.
3 Teacher to check. Examples of similarities and differences that can be observed:

	Similarities	Differences
a	Neither shape has any straight lines.	The diameters on the circle are all the same length but they are different on the oval.
b	They are both regular shapes.	One has five sides and the other has eight sides.
c	They each have at least one pair of parallel sides	The parallelogram has two pairs of parallel sides but the trapezium has only one.
d	They are both irregular hexagons.	One has three pairs of parallel sides but the other has only one pair.
e	They are both pentagons.	One is regular but the other is not.
f	They are both parallelograms.	One (the rhombus) has all sides of equal length but the other does not.
g	They are both quadrilaterals.	One has obtuse and acute angles and the other has four right angles.
h	They are both right-angled triangles.	The first is a scalene triangle but the second is isosceles.
i	They both have a right angle.	The first shape has a reflex angle.
j	They are both octagons.	The first is a regular octagon but the second octagon is not.
k	They both have at least four reflex angles.	The first shape has 10 sides but the second shape has 8 sides.

Extended practice

1 a circumference b radius c diameter
2 a sector b quadrant
c semi-circle
3 Teacher to check and to decide on the level of accuracy that is appropriate.
48

Unit 6: Topic 2

Guided practice

1 a rectangular prism
b square (-based) pyramid
c triangular prism
d cylinder
e octagonal prism
f hexagonal pyramid
g square prism
h cone
i triangular pyramid

Independent practice

1 a rectangular prism
b square (-based) pyramid
2 Teacher to check. Note: it may be necessary to discuss the reason for adding tags to some of the faces. The page could be enlarged by photocopying. Alternatively, students could copy the nets onto grids of a larger size.
3 Teacher to check. Note: teachers will probably wish to provide extra paper for additional practice and to reassure students that success is not necessarily assured at the first attempts in such activities. Look for students who show an understanding of the faces and edges of 3D shapes and are able to accurately reproduce them on isometric dot paper.

Extended practice

\mathbf{a}	Name				
a	rectangular prism	6	8	12	Yes $(14-12=2)$
\mathbf{b}	hexagonal prism	8	12	18	Yes $(20-18=2)$
c	square (-based) pyramid	5	5	8	Yes $(10-8=2)$
d	triangular prism	5	6	9	Yes $(11-9=2)$
e	triangular pyramid	4	4	6	Yes $(8-6=2)$
\mathbf{f}	square prism	6	8	12	Yes $(14-12=2)$
\mathbf{g}	pentagonal prism	7	10	15	Yes $(17-15=2)$
h	octagonal prism	10	16	24	Yes $(26-24=2)$

Unit 7: Topic 1

Guided proctice

1 a 80°, acute
b 100°, obtuse
c 35°, acute
d 145°, obtuse
2 Teacher to check that angles of 25° are drawn. (Decide whether to allow a tolerance of x°.) Look for students who understand how to align the centre of the protractor correctly along the baseline of the angle and who understand which set of numbers on the protractor to read.

Independent proctice

1 (Allow a tolerance of $+/-1^{\circ}$)
a 125° b 165° c 99° d 169°
2 Teacher to check, e.g. The size of the
"outside angle" is 40° less than 360°.

$\mathbf{3}$	\mathbf{a}	330°	\mathbf{b}	315°	\mathbf{c}	215°	\mathbf{d}	265°
$\mathbf{4}$	\mathbf{a}	95°	\mathbf{b}	112°	\mathbf{c}	270°	\mathbf{d}	120°
	\mathbf{e}	333°	\mathbf{f}	40°	\mathbf{g}	30°	h	120°
	\mathbf{i}	45°	\mathbf{j}	155°				

Extended practice

1 a $a=60^{\circ}, b=180^{\circ}$
b $a=125^{\circ}, b=55^{\circ}, c=125^{\circ}$
c $a=48^{\circ}, b=132^{\circ}, c=132^{\circ}$
d $a=50^{\circ}$
$2 \mathrm{~b}=38^{\circ}, \mathrm{c}=142^{\circ}, \mathrm{d}=38^{\circ}$
$e=38^{\circ}, f=142^{\circ}, g=38^{\circ}, h=142^{\circ}$
$i=142^{\circ}, j=38^{\circ}, k=142^{\circ}, I=38^{\circ}$,
$m=38^{\circ}, n=142^{\circ}, o=38^{\circ}, p=142^{\circ}$
3 Teacher to check and decide on level of accuracy that is required. Looking at problem-solving strategies may be seen to be more important than absolute accuracy.

Unit 8: Topic 1

Guided practice

1 a reflection b translation c rotation
2 Teacher to check patterns. Look for students who are able to correctly identify and continue the transformation used in each pattern.

Independent practice

1 Teacher to check descriptions. For example:
a The hexagon has been translated horizontally.
b The triangle has been rotated horizontally.
c The hexagon has been translated vertically.
d The pentagon has been reflected vertically.
e The triangle has been reflected horizontally and vertically.
f The arrow has been translated horizontally. The second row is the same as the first one, but it has been reflected horizontally.
2 Teacher to check pattern. Look for students who can accurately use the language of transformation to describe the pattern.
3 Teacher to check patterns. (Shapes are coloured to simplify the identification of the patterns.) Examples of possible descriptions:
a The shape has been reflected horizontally on the first row. The second row is a vertical reflection of the first row.
b The shape is rotated through 180° clockwise on the first row (or has been reflected horizontally then vertically on the first row). The second row is a vertical translation of the first row.
c The shape is translated horizontally on the first row. The second row is a vertical reflection of the first row

4 Teacher to check pattern. Look for students who are able to successfully demonstrate their understanding of transformations through the construction of their pattern.

Extended practice

1 \& 2 Teacher to check. Look for students who are able to demonstrate proficiency with digital technologies to construct a pattern that draws on their understanding of transformations.

Unit 8: Topic 2

Guided practice

1 yellow triangle
2 a $(-8,-6) \quad$ b $(4,4)$
3 green circle and yellow triangle
4 True
5 a The student draws a line from the origin point to the yellow triangle
b $(1,-1),(2,-2),(3,-3)$
c \& d Teacher to check. Look for students who demonstrate an understanding of the quadrant system and who interpret the coordinates correctly.
Independent practice
1 a $(3,5)$ b $(-4,5)$ c $(-4,1)$ d $(3,1)$
$2(-6,5) \rightarrow(-7,3)$
3 Starting point students' choice. Endpoint must be the same as the starting point, e.g. $(-4,1) \rightarrow(3,1) \rightarrow(3,5) \rightarrow(-4,5) \rightarrow(-4,1)$
4 Teacher to check drawing and coordinates. (It can be an advantage to ask students to give each other their plotted points to check that the drawings match the ordered pairs.) Look for students who demonstrate an understanding of how ordered pairs work and who can use them to accurately describe the points of their figure.
5

6 Teacher to check.

Extended practice

1

Unit 9: Topic 1

Guided practice

1 a 42 b 6
22
3 Accept from $\$ 310$ to $\$ 315$.
49
Independent proctice
1 a Teacher to check students' graphs.
b $27($ Red \& blue $=50$.
Yellow and purple $=23.50-23=27$)

2 Teacher to check information. Totals must be 6 more than the information from question 1.
3 a Teacher to check graph. The most appropriate increment for the vertical axis is 3 , as the highest possible bar total is 32 .
b Answers will vary, e.g. a bar graph because it is easier to work out the numbers for each bar, or a pictograph because it looks better.

4 a

b Teacher to check. Look for students who comment on the information (rather than on the appearance of the graph). For example, the lowest temperature was at 7 am , OR the temperature remained the same between 1200 and 1300 (not "I like the way the lines go up and down").
5 Teacher to check. Look for the way that the student labels the graph and, if necessary, whether an appropriate scale has been used. An appropriate way to present the information would be on a dot plot, a bar graph or a pictograph. Students who choose a line graph have not understood that this is used to show how recorded data changes over a period of time

Extended practice

1 a Annabelle, Jade and Eva
b Approximately one-sixteenth
2 a Numbers for each name
b Any two numbers around 600 that have a difference of 14. (The actual numbers were 612 named Eva and 598 named Annabelle.)
3 Teacher to check, e.g. Similarities: Half of each graph is taken up with one name. The proportion of the second most popular name to the most popular name is about the same on each graph (half). There are two names on each graph that are about as popular as each other.
Differences: The fraction of the second most popular name is slightly smaller for girls than it was for boys.
Note for teachers: The information was taken from a Victorian government website. The data was deliberately chosen to make the graphs look similar. The names are all from the top 100 , but the positions of the names in the top 100 are different
on each. For example, the top boys' name (Jack) was deliberately not included, whereas the top girls' name was. See more at https://online.justice.vic.gov.au/bdm/ popular-names.
4 a Any number between 1550 and 1649. (Actual number was 1596).
b Teacher to check, e.g. there were more than 1500 more babies with the top name for boys than there were for girls.

Unit 9: Topic 2

Guided practice

1 a secondary b primary
2 Some questions may have two possible answers. Teachers may wish students to justify their responses. Likely answers are:
a sample
b census
c sample or census (depending on size of school)
d sample
3 a primary
b sample

Independent practice

1 Secondary data (the class teacher did the survey).
2 a $5\left(\frac{5}{8}\right)$
b $1\left(\frac{1}{8}\right)$
3 Yes, because the principal wrote that it was the majority of the students who were surveyed.
4 It could be true (because it is not clear what the other students would have answered).
5 ... and could be true. Teachers may wish to open up a discussion about this as it raises issues about data in the media. Many may disagree with the newspaper headline but we cannot be sure what the majority of
students in the town think (although neither could the newspaper editor!).
6 a About \$130 to \$135
b four
c About $\$ 42$
7 a sample
b Teacher to check e.g. "No, because it was only based on the views of 200 people". This issue could be used as a basis for a group or class discussion.
c $180\left(\frac{9}{10}\right.$ of 200)

Extended practice

1 a sample b secondary
2 a Any number over 50
b 49%
c Teacher to check, e.g. the public has a right to know how many people were surveyed and what type of people they were.
3 a Teacher to check. Look for students who show an understanding of data collection and the importance of accurately representing data and its sources; e.g. the people surveyed (all students) were not a fair representation of public opinion
b Teacher to check. Look for students who show an understanding of how data collection influences results and can apply this to the situation, e.g. carry out a survey of 100 people of various ages and backgrounds.
c Teacher to check, e.g. it is based on truth, but it cannot necessarily be trusted as a fair reflection of public opinion. This is a possible group or class discussion point.
4 a Teacher to check. Look for students who can offer reasoning to demonstrate their understanding of manipulation of survey responses, e.g. because it probably influenced the answers that people gave.
b Teacher to check. Look for students who choose a question that is likely to result in the collection of more accurate data, e.g. Do you think a fast-food restaurant should be opened near the high school?

Unit 9: Topic 3

Guided practice

1 a Range is 16% to $80 \%=64 \%$
b Range is 75 cm to $150=75 \mathrm{~cm}$
2 a 35% b 76
3 a 44% b 16
4 a 30% b 15

Independent practice

Week	Seven-dayminimum temperatures	Order	Range	Mode	Median	Mean
1	$3^{\circ}, 6^{\circ}, 7^{\circ}, 9^{\circ}, 7^{\circ}, 8^{\circ}, 2^{\circ}$	$2^{\circ}, 3^{\circ}, 6^{\circ}, 7^{\circ}, 7^{\circ}, 8^{\circ}, 9^{\circ}$	7°	7°	7°	6°
2	$1^{\circ}, 3^{\circ}, 2^{\circ}, 9^{\circ}, 7^{\circ}, 7^{\circ}, 6^{\circ}$	$1^{\circ}, 2^{\circ}, 3^{\circ}, 6^{\circ}, 7^{\circ}, 7^{\circ}, 9^{\circ}$	7°	7°	6°	5°
3	$9^{\circ}, 6^{\circ}, 8^{\circ}, 8^{\circ}, 10^{\circ}, 7^{\circ}, 8^{\circ}$	$6^{\circ}, 7^{\circ}, 8^{\circ}, 8^{\circ}, 8^{\circ}, 9^{\circ}, 10^{\circ}$	4°	8°	8°	9°
4	$10^{\circ}, 9^{\circ}, 10^{\circ}, 8^{\circ}, 7^{\circ}, 3^{\circ}, 2^{\circ}$	$2^{\circ}, 3^{\circ}, 7^{\circ}, 8^{\circ}, 9^{\circ}, 10^{\circ}, 10^{\circ}$	8°	10°	8°	9°

2

	Number set	Order	Range	Median
a	$8,2,6,4,10$	$2,4,6,8,10$	8	6
b	$25,14,17,12,6,4$	$4,6,12,14,17,25$	21	13
c	$12,8,2,6,2,5,21$	$2,2,5,6,8,12,21$	19	6
d	$82,23,3,8,15,3,16,2$	$2,3,3,8,15,16,23,82$	80	11.5 or $111 / 2$

3

	Number set	Mode	Mean
a	$8,2,6,4,10$	None	6°
b	$25,14,17,12,6,4$	None	13
c	$12,8,2,6,2,5,21$	2	8
d	$82,23,3,8,15,3,16,2$	3	19

4 a This could be done as a 'think, pair, share' activity, with students sharing their thoughts before arriving at their responses.
The modes should be fairly easy to estimate as (8 hours for Sydney and 6 hours for London).

Looking at the high and low points for each city is likely to result in answers of around 6 or 7 hours of sunshine a day for Sydney and 3, 4 or 5 hours a day of sunshine for London.
b

	Sydney	London
Mode	8 hours	6 hours
Mean	$88 \div 12=7.33$ (rounded to 7 hours)	$50 \div 12=4.166$ (rounded to 4 hours)

c This could take the form of a class or group discussion. Answers will vary. Responses will likely revolve around the difficulty to accurately estimate the mean without doing a calculation.
d Sydney. The mode (8) is only slightly more than the median (7.5) compared to London, where the mode (6) is 1.5 hours different to the median (4.5).
e London. The mean for October to March is $16 \div 6=2.66$ hours a day, rounded to 3 hours. The mean for April to September is $34 \div 6=5.66$ hours a day, rounded to 6 hours. The difference is an average of 3 hours a day less sunshine in the colder months.
f Sydney. The mean for October to March is $46 \div 6=7.66$ hours a day, rounded to 8 hours. The mean for Apri to September is $42 \div 6=7$ hours a day. The difference is 1 hour a day less sunshine in the colder months.

Extended practice

1 a Yes, technically Sam is correct because 10 occurs more frequently than the other scores.
b Answers will vary, teacher to check. A possible answer is that more than half of the scores are less than 10, with two of the scores being very low.
c The median score is 7 out of 10 .
d The mean score is 6 out of 10 . Teachers may choose to ask students to reflect on whether Sam's achievement level is best reflected by the mean, median or mode.
2 a The range is $19(20-1+19)$
b $19 \quad$ c 19
d The mean score is $155 \div 10=15.5$ or $15 \frac{1}{2}$.
e Teachers may choose to use this task for a group discussion about why the mean score does not reflect Sam's ability. The score of 1 out of 20 could be for a variety of reasons ranging from lack of effort to not feeling very well. When interpreting data in the real world, an anomaly (or outlier) is often ignored in order to give a truer interpretation of the data. Students could be further extended by carrying out a similar activity for their own assessments.

3 This could be carried out as a group activity. Multiple answers are possible. Look for students who total the four temperatures (108) and subtract this from $203(7 \times 29)$. The answer of 95 needs to be divided appropriately between the three remaining days. For example, $31^{\circ} \mathrm{C}, 32^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$, instead of $93^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C}$ and $1^{\circ} \mathrm{C}$.

Unit 10: Topic 1

Guided practice

1 Teacher to check. Answers may vary and students could be asked to justify their answers. Probable answers are:
a even chance
b highly likely
c impossible
d likely
e certain
f highly unlikely
g unlikely
$2 \frac{1}{10}$ (1 out of 10)
3 50\%
40.3

Independent practice

1 15\%
2 Students may choose a fraction, a decimal and a percentage in any order but possible answers are:
a $\frac{2}{10}$ (or $\frac{1}{5}$)
b 0.4
c 10%

3 There are 8 out of 10 ways the spinner will not land on green. Answers should be any or all of $\frac{8}{10}, \frac{4}{5}, 0.8$ or 80%.
4 Teacher to check the appropriateness of student responses. Look for students who demonstrate an understanding of the language and application of probability and who are able to justify their responses.
5 Teacher to check. Sectors should be coloured as follows:

- yellow: 2 sectors
blue: 3 sectors
- green: 2 sectors
- white: 2 sectors
- red: 1 sector
$\begin{array}{llllll}6 & \text { a } & 0.8 & \text { b } & \frac{7}{10} & \text { c } \\ \text { d } & \frac{4}{10} & \text { e } & \frac{3}{4} & \text { f } & 8 \%\end{array}$
f 8\%
$7 \frac{4}{10}$
82 should be red, 4 should be yellow and 6 should be blue
9 A: 25 blue \& 75 yellow
B: 60 blue \& 40 yellow
C: 90 blue \& 10 yellow
D: 50 blue \& 50 yellow

Extended practice

1 a 37

c Answers may vary, e.g. because the boss only gives back $\$ 36$ of the $\$ 37$.
d $\$ 1000$
2 a Answers may vary, e.g. 18 out of 37 is almost the same as 18 out of 36 , and 18 out of $36=\frac{1}{2}$.
b 19
c Students' own responses, e.g. because $\$ 37$ was collected but the boss only paid back $\$ 36$. Look for students who understand the probability of landing on black and can apply this to supply a plausible response.
d $\$ 10000$

Unit 10: Topic 2

Guided proctice

1 a $\frac{5}{6}$ or 5 out of 6
b Students' own responses. Look for students who demonstrate an understanding of probability and the fact that, although there is a greater chance of not rolling a 6, it is still possible, e.g. each number has the same chance so there is as much chance for 6 as for every other number.
2 Answers will vary. This could prove an interesting group or class discussion point, with students being asked to justify their responses. Look for students who can explain why different students obtained different results using the language of probability.
3 The probability for each number is 6 . The likelihood of this occurring is probably not very high given the relatively small number of rolls of the dice. This could prove an interesting group or class discussion point about what would be likely to happen after, say, 360 or 3600 rolls of the dice.

Independent practice

1 a 2
b one $(1+1)$
2

Total of fwo dice	Ways the dice can land	Total number of ways
12	$6+6$	1
11	$6+5,5+6$	2
10	$6+4,4+6,5+5$	3
9	$6+3,3+6,5+4,4+5$	4
8	$6+2,2+6,5+3,3+5,4+4$	5
7	$6+1,1+6,5+2,2+5,4+3$, $3+4$	6
6	$5+1,1+5,4+2,2+4,3+3$	5
5	$4+1,1+4,3+2,2+3$	4
4	$3+1,1+3,2+2$	3
3	$2+1,1+2$	2
2	$1+1$	1

37 (6 out of 36 ways)
4 Allow fractional equivalents of the following:

5 Probable number of times for each total:

$12: 2$	$11: 4$	$10: 6$	$9: 8$
$8: 10$	$7: 12$	$6: 10$	$5: 8$
$4: 6$	$3: 4$	$2: 2$	

6 Answers may vary, but likely answers are: Spinner 1: $\frac{3}{20}$ yellow, $\frac{11}{20}$ blue, $\frac{6}{20}$ red;
Spinner 2: $\frac{1}{12}$ yellow, $\frac{7}{12}$ blue, $\frac{4}{12}$ red.

Extended practice

1 a 1 out of $7 \quad$ b one counter
2-3 Teachers may wish to model this game with students and discuss the implications of the game, which demonstrates why the only sure, long-term winner in a gambling situation is the "banker". It may be necessary to allow more than ten rounds of the game to establish a pattern. Teachers will also decide whether to "tweak" the rules so that each player must choose a different number each time. In this case the banker's balance is certain to increase by one counter each round. However, if, for example, each of the seven students "bets" on the same number and the spinner lands on that number, the "banker" will obviously lose. In the long term, however, the probabilities of the game will ensure that the only certain winner is the "banker".

Oxford Mathematics Primary Years Programme is a comprehensive and engaging series for Kindergarten to Year 6. Designed by experienced classroom teachers, it supports sequential acquisition of mathematical skills and concepts, incorporates an inquiry-based approach, and is fully aligned with the understandings and outcomes of the PYP K-6 mathematics curriculum.

The series includes:

- Student Books with guided, independent and extended learning activities to help students understand mathematical skills and concepts
- Practice and Mastery Books (Years l-6) with reinforcement activities and real-world problems that allow students to explore and apply their knowledge
- Teacher Books with hands-on activities, blackline masters and activity sheets, as well as pre- and post-assessment tests for every topic.
Oxford Mathematics Primary Years Programme supports differentiation in the classroom by helping teachers find the right pathway for every student, ensuring that each child can access the PYP mathematics curriculum at their own point of need.

