Oxford **Mathematics** Primary Years Programme

Brian Murray

OXFORD

OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trademark of Oxford University Press in the UK and in certain other countries.

Published in Australia by **Oxford University Press** Level 8, 737 Bourke Street, Docklands, Victoria 3008, Australia.

© Oxford University Press 2019

The moral rights of the author have been asserted

First published 2019

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence, or under terms agreed with the reprographics rights organisation. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form and you must impose this same condition on any acquirer.

ISBN 978 0 19 031225 1

Edited by Philip Bryan Illustrated by Daniel Rieley Typeset by Newgen KnowledgeWorks Pvt. Ltd., Chennai, India Proofread by Vanessa Lanaway, Red Dot Scribble Printed in China by Leo Paper Products Ltd

Acknowledgements

Cover: istock/Snowshill. Internal: Fir0002/Flagstaffotos: meerkat first appearing on page 4; other meerkats: Shutterstock.

To the teacher

Oxford Mathematics PYP provides students with guided and independent work to support mathematical skills and understandings, as well as opportunities for problem-solving in real-world contexts. Teachers will find the supporting materials clear, comprehensive and easy to use. While the series offers complete coverage of the PYP mathematics scope and sequence, teachers can also use the topics that fit well with other areas of work to support student learning across the PYP curriculum.

Student Books

Each topic features:

- **Guided practice** a worked example of the concept, followed by the opportunity for students to practise, supported by careful scaffolding
- **Independent practice** further opportunities for students to consolidate their understanding of the concept in different ways, with a decreasing amount of scaffolding
- **Extended practice** the opportunity for students to apply their learning and extend their understanding in new contexts.

Differentiation

Differentiation is key to ensuring that every student can access the curriculum at their point of need. In addition to the gradual release approach of the Student Books, the Teacher Books help teachers to choose appropriate pathways for students, and provide activities for students who require extra support or extension.

Oxford **Mathematics**

Primary Years Programme

Contents

NUMBER, PATTERN AND FUNCTION

Unit 1 Number and place value

1.	Place value	2
2.	Square numbers and triangular numbers	6
3.	Prime and composite numbers	10
4.	Mental strategies for addition and subtraction	14
5.	Written strategies for addition	18
6.	Written strategies for subtraction	22
7.	Mental strategies for multiplication and division	26
8.	Written strategies for multiplication	30
9.	Written strategies for division	34
10	Integers	38
11.	Exponents and square roots	42
U	nit 2 Fractions and decimals	

1.	Fractions	46
2.	Adding and subtracting fractions	50
3.	Decimal fractions	54
4.	Addition and subtraction of decimals	58
5.	Multiplication and division of decimals	62
6.	Decimals and powers of 10	66
7.	Percentage, fractions and decimals	70
	nit 3 Ratios Ratios	74
TT.	nit 4 Pattorna and alaphra	

Unit 4 Patterns and algebra

1.	Geometric and number patterns	78
2.	Order of operations	82

MEASUREMENT, SHAPE AND SPACE

Unit 5 Using units of measurement

l. Length	86
2. Area	90
3. Volume and capacity	94
4. Mass	98
5. Timetables and timelines	102
Unit 6 Shape	
l. 2D shapes	106
2. 3D shapes	110
Unit 7 Geometric reasoning	
l. Angles	114
Unit 8 Location and transformation	ı
1. Transformations	118

DATA HANDLING

2. The Cartesian coordinate system

Unit 9 Data representation and interpretation

	-	-	
1.	Collecting, representing and interpreting data	1	26
2.	Data in the media	1	30
3.	Range, mode, median and mean	1	34
Uı	nit 10 Chance		
1.	Describing probabilities	1	38
2.	Conducting chance experiments and analysing outcomes	1	42
G	lossary	1	46
A	nswers	1	56

Working with very large numbers

Large numbers have a gap between each set of three digits.

837452691 is easier to read if we write 837 452 691. It also makes it easier to say the number:

eight hundred and thirty-seven million, four hundred and fifty-two thousand, six hundred and ninety-one

Guided practice

Look at this number: 5 367 918

Show the value of each digit on the place-value grid.

Millions		Ten thousands	Thousands	Hundreds	Tens	Ones	Write the number using gaps if necessary
5	0	0	0	0	0	0	5 000 000

2 If we write nine hundred and five thousand, four hundred and seventy-six in digits, we use a zero to show there are no tens of thousands:

Remember to use a zero as a space-filler.

Write as digits:

- a fifty-one thousand, six hundred and four
- **b** two hundred thousand and twenty-six
- c twelve thousand and ten

Ind	lepe	ndent prac	tice				
1	Wha	at is the value o	of the red digit?				
	а	4 <mark>6</mark> 3 290			b	6 <mark>3</mark> 29 477	
	С	2 40 <mark>6</mark> 219			d	5 <mark>1</mark> 385 067	
	е	<mark>8</mark> 0 487 003			f	3 <mark>5</mark> 1 000 819	
2	Writ	e the numbers	from question 1 i	n words.			
	а						
	b						
	С						
	d						
	е						
	f						
3	Writ	e these numbe	ers as digits.				
	а		, four hundred and	ł	b		ee hundred and sand and fifty-nine
				-			
	C		and fourteen millic d and sixty thousa and nine		d		r hundred million, nd ninety-three one

Extended practice To change the calculator screen to show the second number, I would press: 24 550 24 650 а 37 154 77 154 b 739 255 719 255 С 1000000 999 999 d = Sometimes large numbers are abbreviated. \$1K means \$1000. \$1.3M can be used for \$1300 000. Write the new price of these houses using digits in full. \$345K reduced by \$5000 a \$725K reduced by \$20000 b С \$875K reduced by \$50K \$1.5M reduced by \$250K d Imagine you have to choose just **one** digit in each of these numbers. Write: the digit you would choose the value of the digit the reason for your choice. A share of \$574 612. а b Writing out your times tables 574 612 times. Eating 574 612 of your favourite snack food in 10 minutes. С

Complete the grid to show the first ten square numbers. Write the information as you did on page 10.

Complete the pattern and information to show the first 10 triangular numbers.

Extended practice

Continue this table.

_	uare mber	Multiplication fact	Addition fact
1 ² =	= 1	1 × 1 = 1	1
2 ² =	= 4	2 × 2 = 4	1 + 3 = 4
32 =	= 9	3 × 3 = 9	1 + 3 + 5 = 9
4 ² =	=		
5² =	-		
6² =	=		
7 ² =	-		
8² =	=		
9 ² =	=		
10 ²	² =		
b	Write	e the facts for th	ne 11th square number.
b c	How		ou add to the 11th square number
c This	How to fin patte tagona	many would yo d the 12th squa m shows the fir Il numbers.	eu add to the 11th square number are number? st few • I I I I I I I I I I I I I I I I I I I
c This	How to fin patte tagona	many would yo d the 12th squa m shows the fir I numbers. of the numbers	ou add to the 11th square number are number?
c This pent	How to fin patte tagona One penta	many would yo d the 12th squa m shows the fir I numbers. of the numbers agonal number.	in this list is not a

On a separate piece of paper, draw a diagram of the 6th pentagonal number. d

UNIT 1: TOPIC 3 Prime and composite numbers

How do we recognise a prime number?

We say a number is *prime* if it has just two factors: 1 and itself. The number 2 is the smallest prime number because it can only be divided by 1 and 2. Numbers that have more than two factors are called *composite* numbers. A prime number has just 2 factors.

2

1

A composite number has more than 2 factors.

2

4

Guided practice

Complete this chart.

1 only has one factor, so it is neither a prime number nor a composite number.

Number		How many	Prime or composite?		
	(numbers it can be divided by)	factors?	Prime	Composite	
1	1	1	ne	ither	
2	1 and 2	2	1		
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

- a List the prime numbers between 2 and 20.
- **b** Comment on the number of even prime numbers.

Follow these instructions to complete the grid. The grid has been started for you.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- a 1 is neither prime nor composite. Draw a star around it.
- **b** 2 is a prime number. Circle it.
- c Lightly shade all the multiples of 2. They are composite numbers.
- d Put a circle around the next prime number: 3
- e Lightly shade all the multiples of 3. They are composite numbers.
- f Put a circle around the next prime number: 5
- g Lightly shade all the multiples of 5. They are composite numbers.
- h Find the **next** prime number. Circle it.
- i Lightly shade all its multiples.
- j Repeat Step h and Step i until you get to the end of the grid.
- 2 a The highest prime number on the grid is:
 - **b** True or false? All the prime numbers are odd.
 - **c** True or false? More of the composite numbers are even than odd.

Extended practice

The prime factors of 8 are 2, 2 and 2. To show the prime factors of 8, we can write $2 \times 2 \times 2$. We can also write 2^3 .

×

 $-\times$

28 =

28 =

С

2

8

×

2

4

×

2

2

Draw factor trees to show the prime factors.

Х

X

Looking for short cuts

Round numbers are easy to work with. For example, 287 - 98 = ?We could say, 287 - 100 = 187.

We took away 2 too many, so we add 2 back to the answer. So, 287 - 98 = 189.

Guided practice

Use rounding for these subtractions. Fill in the gaps.

	Problem	Using rounding it becomes	Now I need to	Answer
а	317 + 199	317 + 200 = 517	take away 1	516
b	275 – 101	275 – 100 = 175	take away another 1	
C	527 + 302	527 + =	add another	
d	377 – 98	377 – =		
е	249 + 249			
f	938 – 206			
g	1464 + 998			

Splitting numbers can make addition easier. For example, 160 + 830 = ?Split (expand) the numbers: 100 + 60 + 800 + 30Join the partners: 100 + 800 + 60 + 30 = 900 + 90 = 990

Looking for sensible short cuts makes sense to me!

Split the numbers. Fill in the gaps.

			and the second	
	Problem	Expand the numbers	Join the partners	Answer
а	370 + 520	300 + 70 + 500 + 20	300 + 500 + 70 + 20	890
b	2200 + 3600	2000 + <mark>200</mark> + 3000 + <mark>600</mark>	2000 + 3000 + <mark>200</mark> + <mark>600</mark>	
C	342 + 236	300 + 40 + 2 + 200 + 30 + 6		
d	471 + 228			
е	743 + 426			
f	865 + 734			
g	4270 + 3220			

Rounding (and estimating) are useful strategies for mental calculations. How do we know what number we should round to? Sometimes it is quite obvious: 69 rounds to 70 and 902 rounds to 900. Do we always round to the nearest ten or hundred?

Look at these facts and figures and decide how to round the numbers. Explain how you have rounded them.

	Number fact	Rounded number	l rounded this number to the nearest
a	Australia has 812 972 kilometres of roads.		
b	The Electricity Company of China employs 1 502 000 people.		
c	The Mexican soccer player, Blanco, earned \$2 943 702 in 2009.		
d	The fastest speed recorded at the Indianapolis 500 car race was 299.3 km/h.		
е	The fastest 100-metre sprint time for a woman is 10.49 seconds.		
f	The US department store Walmart employs 2 100 000 people.		
g	Each Australian eats an average of 17 L 600 mL of ice-cream a year.		
h	The longest rail tunnel is in Switzerland. It is 57.1 km long.		
i	The amount of money the movie <i>Avatar</i> made was \$2 783 919 000.		
j	Foreign tourists spend \$29 127 000 000 a year in Australia.		

5

A truck company is offering discounts. Use mental strategies to work out the new prices.

Туре	Basic	Deluxe	Premium
Was	\$23 990	\$33 629	\$42 158
Save	\$1500	\$2139	\$3199
New price			

Are calculators always right?

The answer is "yes", but only when they are used properly. Let's suppose Lee wants to add 249 523 + 248 614. Could she trust a calculator answer of 298 137? It's easy to estimate the answer by rounding: $250\ 000 + 250\ 000 = 500\ 000$. So, the answer has to be close to 500 000 and not 300 000. The calculator answer was "wrong" because the wrong information was put into the calculator.

Round and estimate to fill the gaps.

	Problem	Round the numbers	Estimate the answer	Circle the likely answer
	109 897 + 50 157	110 000 + 50 000	160 000	261 054 or 161 054
a	5189 – 2995			2194 or 3194
b	2958 + 6058			9016 or 8016
С	8215 – 3108			5907 or 5107
d	15 963 + 14 387			29 350 or 30 350
е	8954 – 3928			5026 or 4026
f	4568 + 4489			8057 or 9057
g	13 149 – 7908			6241 or 5241
h	124 963 + 98 358			223 321 or 213 321

2

Estimate each answer, then check on a calculator. If the calculator answer is not close to your estimate, find out what went wrong.

	Problem	Round the numbers	Estimate the answer	Calculator answer
	6190 + 1880	6000 + 2000	8000 (Good estimate)	8070
a	4155 + 2896			
b	9124 – 8123			
C	24 065 + 5103			
d	19 753 – 10 338			
е	101 582 + 49 268			
f	298 047 – 198 214			
g	1 089 274 + 1 099 583			
h	1 499 836 + 1 489 967			

Everything in its place

Errors in addition problems often result from not putting things in the right place.

For example, it is easy to see what went wrong when Jake tried to add 724 and 216:

		7	2	4
+	2	1	6	
	2	8	8	4

	7	¹ 2	4
+	2	1	6
	9	4	0

If the digits were in the right columns, this addition problem would be easy to solve correctly.

1

a

Set out these addition problems vertically. Look for a pattern in the answers.

b

е

1325 +	- 897	7	
+			

136	5 + -	1968	}	
+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

С

f

11

3290 -	+ 869) + 1;	396
+			

4378	+ 19	67 +	321
+			

- g 458 + 5379 + 1940 +
- h 49 + 3721 + 578 + 4540 +

j 5396 + 546 + 54 + 3955 + 49

	*******		 ********
	1.000	1.1.1.1.1.1.1.1	
+			
	-	-	

Make up a 5-line addition algorithm for which the answer is 99 999. Make sure each line of the algorithm has at least 3 digits.

		 -						

Did you know that in Australia there are more kilometres of unpaved roads than paved roads? However, in France, there are zero kilometres of unpaved roads.

a Find the total length of roads for each country.

Country	Length of paved roads (km)	Length of unpaved roads (km)	Total length of roads (km)
USA	4 165 110	2 265 256	
India	1 603 705	1 779 639	
China	1 515 797	354 864	
France	951 220	0	
Japan	925 000	258 000	
Spain	659 629	6 663	
Canada	415 600	626 700	
Australia	336 962	473 679	
Brazil	96 353	1 655 515	

- b Apart from Australia, which other countries have more kilometres of unpaved roads than paved roads?
- **c** The total of paved roads in which two countries is 5 680 907?
- d The unpaved roads of which two countries are closest to 1 million kilometres?

Extended practice

Foreign students

Use the table to complete these activities.

1 Write a vertical algorithm and find the total number of foreign students in the USA and UK.

Countries with the highest numbers of foreign students

	USA	595 874
	UK	351 470
11	France	246 612
	Australia	211 526
*	Germany	206 875

- 2 Some people use a calculator to check an answer. Find the total number of foreign students in Australia and the UK by writing an algorithm. Then check the answer with a calculator.
- Imagine you wanted to find the total number of foreign students in France and Germany and in your written algorithm the answer is 453 487. The calculator check gives the answer 453 397. Which answer would you trust? Check to find the correct answer.

Working with trillions

How much of our world is covered by oceans? Use the table to find out.

Pacific Ocean	155 557 000 000 km²
Atlantic Ocean	76 762 000 000 km ²
Indian Ocean	68 656 000 000 km ²
Southern Ocean	20 327 000 000 km ²
Arctic Ocean	14 056 000 000 km²

UNIT 1: TOPIC 6 Written strategies for subtraction

Trading

To make 3465 – 1329 easier to solve, we need to trade. It's like rewriting the number on the top line: 3000 + 400 + 60 + 5 is the same as 3000 + 400 + 50 + 15

There aren't enough ones. Trade a ten. That leaves 5 tens.

Now there are 10 + 5 ones = 15

Guided practice

4

3

6

2

b		Н	Т	0	
		8	ø	4	
		5	2	8	
					5
			2		
d		Th	Н	Т	0
d		Th 6	2	Т 7	О З
d	_		2	Т 7 5	

b	Н	Т	0	
	5	3	8	
_	3	3	9	
d	Th	Н	т	0
	4	3	8	4
_	2	3	9	9
	Tth	Th	Н	Ŧ
	run	111		Т
	2	3	5	9
_	1	4	6	9

7

0

8

9

1

Complete these. Look for a pattern in the answers.

а		9	2	5	4	5	b		8	4	0	4	
	-	3	8	2	2	4		-	1	8	6	1	
С		9	1	3	6	0	d		9	2	9	7	
	-	1	4	8	1	7		-		5	3	1	
е		9	9	9	5	3	f		8	8	2	2	
	-		1	1	8	8		_	3	1	4	3	
g		7	7	7	5	6	h		4	6	6	3	
	_	3	2	0	7	8		_	1	2	0	6	
Ê.		9	7	7	4	6	j i		2	1	2	1	
	_	7	4	2	9	0		_		8	8	6	
													-

2 Use the following digits once each to make the largest and smallest numbers possible. Then find the difference between them.

Working-out space

7

5

2

8

5

6

5

8

2

7

More ones are needed but there are no tens

... so trade from the HUNDREDS to the TENS first. Trade a hundred. That leaves 3 hundreds.

Now there are 10 tens.

Trade a ten. That leaves 9 tens.

_		1		_
	Th	Н	T	0
	3	3 ₄	109	1 ₅
-	1	3	2	/9
	2	0	7/	6
			1	

Now there are 15 ones.

Remember to trade across one

column at a time.

	1	2	7	0	4		b		2	5	0	1	2	
-		9	4	3	6			_	1	2	3	9	3	
						5.0								8
	4	0	3	0	4		d		5	0	4	0	8	
-	1	7	6	4	8	5		_	1	5	8	2	9	1. 1. 1.
						22								-
	5	0	5	2	0	5	Ť		9	0	3	4	0	Ę
_	1	2	9	4	2	8		_	2	2	7	3	3	-
	2	0	0	8			h		1	6	0	0	2	
-	1	2	5	9				-	1	2	3	5	3	
					-									
	7	4	0	0	5	8	j		1	0	0	0	0	(
_	4	2	0	0	0	4		_		3	4	3	7	8

- 2 2 7 3 3 7	9	0	3	4	0	5
	 2	2	7	3	3	7

	1	0	0	0	0	0
_		3	4	3	7	8

Extended practice

Checking subtraction by using addition

One way to check a subtraction answer is by addition. For example, 100 – 75 is 25. We can be sure of this by adding 25 to 75.

a Does 317 418 – 123 783 = **193 635** or **193 335**? Check by adding, and then complete the subtraction.

	1	9	3	6	3	5		1	9	3	3	3	5		3	1	7	4	1	8
+	1	2	3	7	8	3	+	1	2	3	7	8	3	-	1	2	3	7	8	3
,							,													
	b						99 879 ractior		26 2	. 96 (or 12	6 20)6 ?(Check	by a	ddin	g, ar	nd th	nen	
	1	2	6	2	9	6		1	2	6	2	0	6		3	2	6	1	7	5
+	1	9	9	8	7	9	+	1	9	9	8	7	9	-	1	9	9	8	7	9
3	С						58 254 ractior		192 8	390	or 1 9	91 79	90 ?	- Check	by a	addir	ng, a	nd tl	nen	
	1	9	2	8	9	0		1	9	1	7	9	0		3	5	0	0	4	4
+	1	5	8	2	5	4	+	1	5	8	2	5	4	-	1	5	8	2	5	4

Here is a subtraction and addition trick using 3 different digits, such as 3, 6 and 2 or 3, 4 and 5. Try with other sets of 3 digits here and on another sheet of paper.

Make the largest number		6	3	2			5	4	3			
Make the smallest number	-	2	3	6		-	3	4	5			
Subtract		3	9	6	OR		1	9	8	OR		
Reverse the number	+	6	9	3		+	8	9	1			
Add	1	0	8	9		1	0	8	9			

- **a** Use other sets of 3 different digits to prove that the answer is always the same.
- **b** What happens if two of the three digits are the same?

The ten trick

Multiplying by 10 in your head is easy – but you don't just add a zero!

If we just added a zero to multiply \$1.50 by 10, the answer would be \$1.500 - and that's not correct!

Guided practice

- 1 When you **multiply** by 10, the digits move one place bigger (to the left) and the zero fills the space. When you multiply by 100 they move two places, and so on. Complete the grid.
 - When you **divide** by 10, the digits move one place smaller (to the right). Use decimals if necessary.

	×	10	100	1000	10 000	
	37	370	3700	37 000	370 000	
а	29					
b	124					
C	638					
d	\$1.25					
е	750					

	÷	10	Write the multiplication fact partner
	120	12	12 × 10 = 120
	45	4.5	4.5 × 10 = 45
а	370		
b	4700		
С	2000		
d	\$22.50		
е	54		

3 When you **divide** by 100, the digits move two places to the right. Use decimals if necessary.

	÷	100	Write the multiplication fact partner
	500	5	5 × 100 = 500
	\$275	\$2.75	\$2.75 × 100 = \$275
a	700		
b	\$495		
C	5000		
d	12 000		
е	8750		

Multiplying by multiples of 10 using doubling strategies.

	×	10	20 [double]	40 [double again]	80 [double again]
	13	130	260	520	1040
a	12				
b	15				
C	22				
d	25				
е	50				

Dividing by multiples of 10 using halving strategies.

	÷	÷ 10	÷ 20 [halve it]	÷ 40 [halve again]	÷ 80 [halve again]
	800	80	40	20	10
 a	400				
 b	2000				
 C	480				
 d	10 000				
 e	8800				

3 Multiplying large numbers by 5.

5		× 5	First multiply by 10	Then halve it	Multiplication fact
		84	840	420	84 × 5 = 420
	a	24			
	b	68			
	C	120			
	d	500			
	е	1240			

Dividing large numbers by 5.

	÷ 5	First divide by 10	Then double it	Division fact
	160	16	32	160 ÷ 5 = 32
a	420			
b	350			
C	520			
d	900			
е	1200			

Multiplying by splitting the multiple of 10. 25 × 30 is the same as 25 × 10 three times, so you can find the answer

by splitting 30 into 3 tens.

	× 30	First × 10	Then × 3	Multiplication fact
	25	250	750	25 × 30 = 750
a	15			
b	22			
C	33			
d	150			
е	230			

Sometimes it's easier to split the multiple of 10 differently. 25 × 30 is also the same as finding 25 × 3, ten times.

	× 30	First × 3	Then × 10	Multiplication fact
	25	75	750	25 × 30 = 750
a	15			
b	22			
С	33			
d	150			
е	230			

Use your choice of strategy. Be ready to explain how you got the answer.

а	15 × 40	 b	22 × 40	
С	25 × 50	 d	34 × 50	
е	14 × 60	 f	125 × 40	
g	15 × 80	 h	72 × 20	
i	19 × 30	 j	\$1.20 × 60	
k	\$2.25 × 40	 I.	832 ÷ 2	
m	832 ÷ 4	 n	248 ÷ 4	

Sam has a coin collection with 437 twenty-cent coins in it. Use a mental strategy to find out how much money Sam has.

Answer:

Extended practice

You can use the split strategy to multiply 24 by 15. Split it into 24×10 and 24×5 .

	× 15	× 10	Halve it to find × 5	Add the two answers	Multiplication fact
	24	240	120	240 + 120 = 360	24 × 15 = 360
a	12				
b	32				
С	41				
d	86				
е	422				

2

1

Here is a mental strategy for multiplying by 13.

	× 13	Number × 10	Number × 3	Add the two answers	Multiplication fact
	22	220	66	220 + 66 = 286	22 × 13 = 286
a	15				
b	12				
С	23				
d	31				
е	25				

3 Choose a strategy to solve these problems. Be ready to explain how you got the answers.

а	25 × 100	b	315 × 20
С	80 ÷ 20	d	900 ÷ 30
е	22 × 400	f	\$36 ÷ 20
g	\$3.40 × 20	h	\$36 ÷ 40
	nen you are resting, your heart beats ab nes does your heart beat in	out onc	e every second. About how many

a 1 minute? _____ b 1 hour?

4

Extended and short multiplication

You can write the multiplication for 43×5 in either its long or short form.

Guided practice

Multiplying by a multiple of 10 is no harder than multiplying by a single-digit number, as long as you remember the "10 trick". For example, what is 43×20 ? It's the 10 trick, so everything moves over one place. 4 3 ***** 2 0 **8 6 0** 2 Then just multiply × 2.

1	а		3 5	b	2 7	С	36	
		×	2 0	×	2 0	>	« 3 0	
			0		0			Remember the
	d		4 6	е	67	f	34	zero — it moves
		×	4 0	×	3 0	>	6 0	everything over one place.
								A.
	g		152	h	2 4 6	1 E	183	AP 1
		×	2 0	×	4 0	>	« 6 0	11
								A BAR
	j –		1 3 8 2	k	2658	1	2609	
		×	4 0	×	7 0	>	4 8 0	

- ² Thirty students go on a school camp. It costs \$146 for each student. What is the total cost?
- The crystal in a quartz watch vibrates 32 768 times a second.
 How many times does it vibrate in one minute?

Working-out space

Extended practice

At the top of page 36, you looked at a way of multiplying 36×25 . You can make this shorter by putting both multiplications into one algorithm: $(36 \times 5) + (36 \times 20)$.

а	2 9	b	4 2	С	39
	× 25		× 27		× 19
	+ 0 ← 29 × 20		+		+
	<u></u>		<u> </u>		
d	3 3	е	75	f	64
	× 4 3		× 15		× 37
	+		+		+
g	1 2 3	h	2 0 7	3	396
	× 26		× 54		× 47
	+		+		+
	10				<u> </u>

2

Use the working-out space to answer these.

- а At Mount Waialeale in Hawaii, it rains 335 days a year. If you lived there for 35 years, how many rainy days would you have?
- b Amy sneezed 2700 times a day for two years. How many times did she sneeze in the month of January?

UNIT 1: TOPIC 9 Written strategies for division

Two ways of writing division problems

150 divided by 2 can be written as $150 \div 2$ or as 2)150If you need to do written working for a problem such as $135 \div 3$, do it like this:

If two people shared \$25, we would not leave the remainder as \$1, nor would we call it $\frac{1}{2}$ a dollar. We would use a decimal: $$25 \div 2 = 12.50 To write an algorithm, we need to put a decimal point and show "zero cents". $\frac{12.50}{2}$

Put in the decimal point and the zeros to complete these.

We can use decimals for other remainders. For example, if Than scores $\frac{17}{20}$, $\frac{18}{20}$, $\frac{19}{20}$ and $\frac{15}{20}$ in four tests, his average score is the total (69) $\div 4 = 17$ r1, or $17\frac{1}{4}$ or 4) $\frac{17.25}{16^29.10^20}$

а	4)595.00	b	5)628	C	8)506
d	5)684	е	4)1347	f	8)9852
g	6)17193	h	5)11598	i	8)52186

- Solve the following problems. Think of the most appropriate way to deal with the remainders.
 - a 145 marbles are divided between four people. How many do they each have?
 - b Four people share a prize of \$145. How much does each person receive?

Sometimes a decimal remainder goes further than two decimal places. We can choose to stop after a certain number of places. For example, if Than scores 18 out of 20, then 15, then 19, his average score is 52 divided by 3:

Stop after 2 decimal places = 17.33 $3 \cdot 5^{2} \cdot 2 \cdot 0^{1} \cdot 0^{1} \cdot 0^{1} \cdot 0^{1}$

UNIT 1: TOPIC 10 Integers

If you ask a seven-year-old, "What is 5 – 8?" they will probably answer,

"You can't take 8 away from 5." However, a calculator would give the answer:

5 - 8 = -3

Integers are whole numbers. They can be *positive* (greater than zero) or *negative* (less than zero). For –3, we say *negative* 3.

Independent practice		
A number line can show operations such as 2 + 4 or 1 – 3.	-8 -7 - Number Decreas -8 -7 -	$\begin{array}{c} \textbf{a} 2 \text{ by 4.} \\ \textbf{b} \textbf{b} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} c$
1 Show these operations on the for each operation.	e number lin	es. Write the number sentence
a Increase –2 by 4.		b Decrease 2 by 3.
- 8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5		-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Number sentence:	2	Number sentence:
c Decrease 4 by 7.		d Increase –6 by 5.
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5	5 6 7 8	 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Number sentence:		Number sentence:
e Decrease –3 by 5.		f Increase –8 by 8.
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5	6 7 8	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Number sentence:		Number sentence:
g Increase –8 by 10.		h Decrease 7 by 11.
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5	· · · · ► · · · · · ►	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Number sentence:		Number sentence:
i Increase –7 by 15.		j Decrease 6 by 13.
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5	6 7 8	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Number sentence:		Number sentence:
2 Write what a calculator would	l show if you	u pressed the following:
a 4 – 5 =	b 15 – 1	16 = c 4 − 8 =
d 7 – 12 =	<mark>e</mark> 10 – 2	20 = f 40 - 100 =

Find the counting number for these number lines, then fill in the missing numbers.

The table shows the 4 am temperatures over one week in a mountain range.

Saturday	-1°C
Sunday	1°C
Monday	-2°C
Tuesday	2°C
Wednesday	0°C
Thursday	−4°C
Friday	−3°C

- a Write the temperatures on the thermometer.
- **b** Write the correct day next to each temperature.
- c The coldest day was
- d The coldest temperature was _____° colder than the warmest.

Each of these letters represents the value of a number. From the information given, plot the letters in the correct place on the number line.

Average maximum January temperature

- Use the graph to answer these questions.
- a Which cities have negative average January temperatures?
- b In which city is the average temperature 5°C higher than Helsinki?
- c If the average temperature in Vienna were to fall by 6°C, what would the new average temperature be?
- **d** Which three pairs of cities have a temperature difference of 33°C?

Sometimes banks allow people to withdraw money even if there is not enough money in their account. This is like a loan. When this happens, the person has a negative amount of money. A bank statement is one way to check how much is in the account. Fill in the balances.

INTERNATIONAL BIG BANK						
Date	Paid in \$	Paid out \$	Balance \$			
3 May	100		100			
4 May		120				
9 May	30					
14 May		50				
31 May	45					

- People often use credit cards for shopping. Until a credit card is used, the amount owing on it is neither negative nor positive. The balance is zero.
 - a If Tran uses a credit card to pay a \$100 bill, what is the balance?
 - At the end of the month, Tran can choose to pay off some or all of his negative balance. If he chooses to pay back \$10, he would still owe more than \$90.
 Why do you think this is?

Exponents

We often look for shortcuts in mathematics. A shortcut for 3 + 3 + 3 + 3 + 3 is $3 \times 5 = 15$.

We can also use **exponents** as shortcuts. A short way of writing 3×3 is 3^2 . The base number is 3. The exponent is 2. It can also be called the index or power. The exponent tells us to use the base number (3) in a multiplication two times. So, $3^2 = 3 \times 3 = 9$.

Guided practice

Write each multiplication as a base number and exponent. Remember to write the exponent smaller and higher than the base number.

	Multiplication	Base number and exponent
	3 × 3 × 3	3 ³
a	$2 \times 2 \times 2 \times 2 \times 2$	
b	$4 \times 4 \times 4$	
C	8 × 8 × 8 × 8	
d	$5 \times 5 \times 5 \times 5 \times 5$	
е	7 × 7 × 7 × 7 × 7 × 7	
f	$10 \times 10 \times 10 \times 10$	

2

Fill in the gaps in the table.

	Base number and exponent	Number of times the base number is used in a multiplication	Multiplication	Value of the number
	4 ²	two times	4 × 4	16
а	3 ³	three times		
b	24			
C	5 ³			
d	6²			
е	9 ²			
f	10 ³			

Square roots

To understand what is meant by the square root of a number, we need to look at square numbers.

Four squared can be written as 4². The diagram on the right shows what it looks like.

 $4^2 = 4 \times 4 = 16$

A square root goes the opposite way. The symbol for square root is $\sqrt{}$.

So if 4 squared is 16, the square root of 16 is 4. We can write it like this: square root $\sqrt{16} = 4$.

Guided practice

Find the square root of these numbers. Remember to ask the question: what number multiplied by itself makes the number?

square

		What number multiplied by itself makes the number?	Square root of the starting number	Number fact
	16	4 × 4 = 16	4	√16 = 4
а	4			
b	36			
С	9			
d	64			

The starting numbers in question 3 were square numbers. If the starting number is not a square number, then we give the approximate the square root.

Find the approximate square roots of these numbers.

		Which two square numbers is it between?	What are their square roots?	The square number is between
	7	4 and 9	√4 = 2 and √9 = 3	2 and 3
a	10			
b	42			
С	20			
d	52			

Base numbers with exponents can look small, such as 2⁷. However, when you expand the number the value can be quite large. For example, the value of 2⁷ is greater than 100.

Find the value of these numbers. Begin by expanding the number. You may need a calculator for some.

	а	$2^7 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = $		
	b	5 ⁵ =		
	С	3 ⁶ =		
	d	4 ⁵ =		
	е	7 ⁴ =		
2	Circ	le the number with the greater value in each pair.	a 9^4 or 8^5	b 5^3 or 3^5
3	Finc	I the value of the exponent.		
	a	5 to the power of = 15 625		
	b	10 to the power of = 1 million		

Find the approximate square root, then the actual square root (to two decimal places). You will need a calculator with a square root function for the actual square root.

	Starting number	The approximate square root is between	Actual square root (to two decimal places)	Number fact
	5	2 and 3	2.24	√5 = 2.24
a	40			
b	14			
C	30			
d	99			

Sometimes you will see 2⁵ written like this: 2^5. This can be useful if you are using a computer. The ^ symbol is usually above the 6 key.

Negative exponents

A base number can have a negative exponent, like 2^{-2} . Negative is the opposite of positive. A positive exponent involves multiplication. For example, $2^2 = 2 \times 2 = 4$.

The opposite of multiplication is division. A negative exponent involves division.

A negative exponent tells us how many times to divide 1 by the base number.

2⁻² tells us to **divide 1** by the base number (2) and then divide by 2 a second time. First time: Divide 1 by $2 = \frac{1}{2}$ or 0.5. Second time: Divide $\frac{1}{2} \div 2 = \frac{1}{4}$ or 0.25. So, $2^{-2} = 1 \div 2 \div 2 = 0.25$. 2 Find the negative exponents. You may need a calculator for some.

а	$8^{-1} = 1 \div 8 =$	 b	$8^{-2} = 1 \div 8 \div 8 =$	
С	4-1 =	 d	4-2 =	
е	10 ⁻² =	 f	10 ⁻³ =	·

In question 2, we started with 1 and then divided. A different way of looking at positive exponents it is to start at 1 and then multiply. For example, $3^2 = 1 \times 3 \times 3 = 9$. Find the value of these by expanding in the same way.

- **a** 6³ **b** 4⁴
- 4 What if the exponent is 1? Try with various numbers. Write a sentence about what happens to the base number when the exponent is 1.

UNIT 2: TOPIC 1 Fractions

1

If you look at an equivalent fraction such as $\frac{2}{4} = \frac{1}{2}$, you can see that there is a connection between the numerator and denominator.

What is the connection between the **numerator** and the **denominator** in each of these pairs of fractions?

UNIT 2: TOPIC 2 Adding and subtracting fractions

Adding and subtracting *like* fractions (such as $\frac{3}{4} - \frac{1}{4}$) is as easy as working out 3 jelly beans – 1 jelly bean. $\frac{3}{4} - \frac{1}{4} = \frac{2}{4}$ With unlike fractions, use your knowledge of equivalent fractions to add or subtract. $\frac{2}{4}$ $\frac{9}{8}$ or $1\frac{1}{8}$ 58 $\frac{5}{8}$ + $\frac{4}{8}$ + = = Remember Guided practice that fractions need to be like fractions for <u>5</u> 7 $\frac{3}{7}$ + b addition and a subtraction. += $\frac{5}{6}$ $\frac{1}{6}$ _ = 6 11 С n $\frac{3}{4}$ $1\frac{7}{10} - \frac{9}{10} =$ $\frac{3}{4}$ + 10 2 a 38 38 $\frac{1}{4}$ ++== 8 8 b <u>3</u> 4 $\frac{3}{4}$ $\frac{1}{2}$ =

Extended practice From the way this cake is arranged, it is obvious that the slices will add together to make a whole cake: Prove that these pieces can also be added together to make a whole cake. (Hint: Look 5 18 $\frac{1}{3}$ 29 at the size of each fraction.) 6 Working-out space Write each answer in its **simplest form**. **a** $\frac{9}{10} + \frac{3}{5} =$ _____ **b** $1\frac{5}{6} + \frac{7}{12} =$ **d** $1\frac{13}{100} - \frac{1}{10} =$ **c** $3\frac{1}{4} - 1\frac{5}{8} =$ **f** $3\frac{2}{3} - 2\frac{1}{6} =$ **e** $2\frac{5}{12} + 3\frac{4}{12} =$ **g** $2\frac{1}{3} + 1\frac{1}{4} =$ At a party, there are parts of four cakes left over. One cake was split into quarters, but the others were split into different fractions. The total amount left is one and one-sixth. What fraction of each cake might be left? Working-out space

UNIT 2: TOPIC 3 Decimal fractions

1)	Shade:		22	
	a 0.05	b 0.35	c 33 100	d 0.9

Write True or False next to each of these:

а	0.5 > 0.05		g	$0.04 = \frac{4}{1000}$	
b	$\frac{7}{1000} < 0.007$	·	h	1.001 > 0.99	
С	$\frac{17}{100} = 0.17$		i	$3.25 = 3\frac{1}{4}$	
d	0.009 > 0.01		j	5.052 > 5.502	
е	$\frac{175}{1000} = 0.175$		k	2.430 > 2.43	
f	$\frac{1}{4} > 0.025$		T	9.999 < 10	

- a Colour 0.15 red.
- b Colour 0.05 yellow.
- c Colour 0.45 blue.
- d Colour one-tenth green.
- e Write the unshaded amount as a fraction and as a decimal.

Order	these from	smallest	to larges	st:			
0.45	0.145	0.415	0.451	0.045			
						-	
Compl	lete this tabl	e. Write t	he missin	a fraction	ns and (decimals	S.
				.9			
	Fraction		Decimal				nember, the first
	$\frac{1}{2}$		0.5	5			nal column is for ths, the second
a	$\frac{3}{4}$					is f	for hundredths
b			0.1				the third is for housandths.
				0			
С			0.3	0			
d	<u>9</u> 100						-
е			0.4	05			
f	<u>250</u> 1000						184
g	99						THE NE
3	1000		0.0				(CERCE)
h							

Change these improper fractions to mixed numbers and then to decimals.

	Improper fraction	Mixed number	Decimal
	<u>5</u> 4	1 <u>1</u>	1.25
a	$\frac{7}{4}$		
b	<u>13</u> 10		
C	<u>125</u> 100		
d	<u>450</u> 100		
е	<u>275</u> 100		
f	<u>1250</u> 1000		

CO	me common fraction fr	ons to decin					
a	<u>1</u> 10 =	b	$\frac{1}{4} =$			С	7/10 =
d	0.01 =	е	0.75 =			f	0.001 =
То	change a fraction	to a decima	al, divide th	e nume	erator b	by the o	denominator.
2)	<u>0.5</u> 1. ¹ 0						
Cha	ange these to dec	cimals.					
а	<u>1</u> 5			b	$\frac{1}{8}$		
С	$\frac{3}{4}$			d	3		
е	$\frac{4}{5}$			f	<u>7</u> 8		
Δn	other common fra	action is $\frac{1}{2}$ h	out it doesr	n't look y	simnle	when	it is expressed.
dec Dec anc the plac	other common fra cimal. Find the de cimals in which a d over are called <i>r</i> e recurring numbe ce a dot (like a ful	cimal equiva number is r <i>ecurring dec</i> r in a decim I stop) over	alent of $\frac{1}{3}$ by the top of top	by writin ver show the	simple g an a	when Igorith	it is expressed of m or using a cal
dec Dec anc the plac	cimal. Find the de cimals in which a d over are called <i>r</i> e recurring numbe	cimal equiva number is r <i>ecurring dec</i> r in a decim I stop) over Find the dec	elent of $\frac{1}{3}$ by the second sec	oy writin ver show the valent	simple g an a	when	it is expressed on or using a cal

You can add or subtract decimals just like you do with whole numbers:

	3	1	4		3
+	1	7	3	+	
	4	8	7		4

	3	•	1	4
+	1	•	7	3
	4	•	8	7

But if there is a different number of columns, it is important to line up the numbers according to their place value:

	2	3	1	7
+		5	9	7
	2	9	1	4

	2	3 • 1	7
+	5	9 • 7	
	8	2 • <mark>8</mark>	7

The decimal point doesn't make much difference to the way you work, but it makes a BIG difference to the answer.

Guided practice

Find the answers.

	2	5	3	7
+	1	6	2	9

b	

	2		• 3	7
+	1	6	• 2	9
			•	

2

Use place value to line up the numbers and calculate the answers.

b

е

a 32.8 + 12.4

+ •

2.47 + 1.9

24.74 + 4.38

С

d 75.9 – 23.6

f 36.25 – 9.28

Calculate the answers.

Sam can run two 50-metre laps of	a 82.53 seconds
the school athletic track in less than	b 9.253 seconds
18 seconds. What is the most likely	c 92.53 seconds
time for each lap?	
	d 8.253 seconds
Bill is building a fence that is 73.17 m long and a quarter metres of it. How much mo	
Working-out space	
Final the total manage of a memory that have fo	
Find the total mass of a parcel that has fo 4.45 kg. 3.325 kg. $1\frac{1}{2}$ kg. 725 g	ur items that weigh:
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g	ur items that weigh:
	ur items that weigh:
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g	ur items that weigh:
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g	ur items that weigh:
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g	ur items that weigh:
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g	ur items that weigh:
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g	ur items that weigh:
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space	
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space A roll of cloth is 14.36 m long. How much	
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space A roll of cloth is 14.36 m long. How much from the roll?	
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space A roll of cloth is 14.36 m long. How much	
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space A roll of cloth is 14.36 m long. How much from the roll?	
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space A roll of cloth is 14.36 m long. How much from the roll?	
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space A roll of cloth is 14.36 m long. How much from the roll?	
4.45 kg, 3.325 kg, 1 ¹ / ₂ kg, 725 g Working-out space A roll of cloth is 14.36 m long. How much from the roll?	

The answer to this equation is 9.18. Try to find at least two ways of filling the gaps to complete the equation.

Did you know that your skin weighs almost as much as your bones? This table lists the mass of the eight largest organs in an adult who weighs 68 kg.

Organ	Mass		
heart	0.315 kg		
lungs	1.09 kg		
skin	10.886 kg		
pancreas	0.098 kg		
brain	1.408 kg		
spleen	0.17 kg		
liver 1.56 kg			
kidneys	0.29 kg		

Rewrite the table, listing the organs from heaviest to lightest.

Working-out space

Organ	Mass

- **b** Find the total mass of the heart and lungs.
- c How much heavier is the skin than the brain?
- d The mass of which organ is closest to the mass of the kidneys?
- The right lung is 0.07 kg heavier than the left lung (to make space for the heart). What might the two masses be?
- f What is the difference between the mass of the lungs and the mass of the pancreas?
- **g** The mass of an adult male gorilla is about 240 kg, but his brain weighs only 0.465 kg. How much heavier is a human brain than a gorilla's brain?

UNIT 2: TOPIC 5 Multiplication and division of decimals

You can multiply decimals in the same way that you multiply whole numbers:

ber	by 4	M E>	
2	4		
	4	>	
9	6		
		-	

	ltiply ende	-	ecimal by Sho		
	2	4		2 •	4
×		4	×		4
	1	6		9	6
+	8	0			
	9	6			

Guided practice

d 1 8 • 3 × 5

4 3 2 • 1 × 2

C

f

k

е

h 2 • 5 7 × 3

> 2 • 5 7 5 × 3

i

I

point in the correct place!

Remember to put the decimal

×		4

	. And	0	5	0
×				7

b 6)72.6 3)15.9 4)49.6 C а 5)97.5 e 5)5.25 4)9.48 d f 2)6.38 h 7)84.7 4)57.52 1 g j 3)37.41 k 8)20.56 9)4.743 1

Multiply:

Pete's Pizza Place gets an order for eight ordinary pizzas at \$8.95 each and one pizza supreme at \$12.95. What is the total cost?

A 5.4 m length of wood is cut into nine equal pieces. How long is each piece?

Eight people share a prize of \$500. How much does each person receive?

Here is a list of items bought for a party for a group of six students:

ltem	Unit cost	Number required	Cost
Soft drink (1.25 L)	\$2.25	half a bottle for each student	
Juice (300 mL)	\$0.84	one for each student	
Potato crisps (50 g)	\$1.35	two for each student	
Chocolate (150 g)	\$4.93	two packets	
Melon	\$3.84	one between the group	
Pies (4 in a pack)	\$8.04	one pie for each student	

- a Fill in the cost column for each row. Consider whether you will need to round the amounts of money.
- b What is the cost of all the items for the group?
- c How much per person does it cost for the melon?
- d What is the total cost for **each** of the six students?
- e There are four groups of six in the class. What is the cost for the whole class?

Working-out space

UNIT 2: TOPIC 6 Decimals and powers of 10

Multiplying a decimal by 10 is almost the same as multiplying a whole number by 10: everything moves one place bigger.

The difference is the **zero**. You have to decide whether it is needed.

34.0 has the same value as 34, so you can write $3.4 \times 10 = 34$

Multiplying or dividing by 1000 moves the digits over three places.

Extended practice								
1				100 🔲 225 >		.4. Which one is it? □ 2.25 × 4 ÷ 1000		
2	Use what you found out in question 1 to find the answer to these problems.							
	а	3.12 × 0.3		b	31.2 × 0.3			
	С	20.3 × 0.03		d	40.02 × 0.2			
3	Ноч	w many jumps) to 500?		
4	A fast food store has a 150-litre barrel of juice. How many cups can be filled if the cup sizes are:							
	а	0.25 L?		C	0.15 L?			
	b	0.2 L?		d	600 mL?			
5	A s a		948 for 1000 wat e average price o					
	 b One-tenth of the total price was for insurance. What was the insurance charge? 							
	 C One watch was worth one-hundredth of the total price. How much was that watch? 							
	Wo	orking-out space						

The symbol % stands for *per cent*. It means *out of a hundred*. So 1% means 1 out of 100. It can be written as:

- a fraction: $\frac{1}{100}$
- a decimal: 0.01
- a percentage: 1%

The amount shaded is:

 $\frac{4}{100}$ (fraction)

0.04 (decimal)

4% (percentage)

Guided practice

Write a fraction, decimal and percentage for each shaded part. Fraction b Fraction Fraction С a Decimal **Decimal** Decimal **Percentage Percentage** Percentage **Fraction** Fraction Fraction d e **Decimal Decimal Decimal** Percentage Percentage Percentage Shade the grid and fill the gaps. b d a С **Fraction** Fraction Fraction **Fraction** 2 100 $\frac{7}{10}$ **Decimal** Decimal Decimal Decimal 0.2 Percentage Percentage Percentage Percentage 35%

Remember that 1% has the same value as 0.01 and $\frac{1}{100}$. Independent practice Write True or False. Complete this table. Fraction 30% = 0.3 **Decimal** Percentage a <u>15</u> 100 а 0.04 < 40% b b 0.22 $0.12 > \frac{12}{100}$ С 60% С **d** 25% = $\frac{1}{4}$ d 0.09 $\frac{9}{10}$ е **e** $\frac{3}{4} < 75\%$ f 53% f 0.9 = 9%0.5 g $\frac{1}{4}$ h **g** $\frac{2}{10} > 20\%$ i. 0.04 h 95% = 0.95 75% j $\frac{1}{5}$ k i -100% = 1 Order these from **smallest** to **largest**. 0.3 20% $\frac{1}{4}$ _____ **b** 0.07 69% $\frac{6}{10}$ _____ a **c** 17% 0.2 $\frac{2}{100}$ **d** $\frac{1}{4}$ 4% 0.14 $10\% \frac{1}{5} 0.5$ **f** 39% 0.395 $\frac{3}{10}$ **f** 39% 0.395 $\frac{3}{10}$ е Find the matching $\frac{1}{20}$ fractions, decimals 5% 0.05 8% 0.02 and percentages. Choose colours to 8 100 0.5 50% <u>8</u> 10 2 100 lightly shade each matching set of three. 0.8 $\frac{1}{2}$ 0.08 80%

Fill in the blanks on this number line.

Extended practice

Read the information about Australia. Then write your answers in complete sentences and you will have six facts about Australia. You might need to use spare paper for your working out.

1

In Australia, there are around 28 million cattle. That is about $\frac{1}{50}$ of all the cattle in the

world. What percentage of the world's cattle is in Australia?

- 2 There are 378 mammal species in Australia. 80% of them are found nowhere else in the world. Change 80% to a fraction and write it in its simplest form.
- 3 Around 25% of the people in Australia live in Victoria. Australia's population reached 22 million people in 2009. What was the approximate population of Victoria in 2009?

Australia sounds like an interesting place. I might move there!

- Australia has 79 million sheep. This is $\frac{3}{20}$ of the number of sheep in the world's Top 10 sheep countries. What percentage of the sheep in the Top 10 countries are in Australia?
- 5 Some people think Australia is mainly desert. In fact, the Great Sandy Desert only covers about 5% of Australia. Write the fraction (in its simplest form) of Australia that is covered by the Great Sandy Desert.
- 6 Australia has 749 out of 5594 of the world's threatened animal species. Circle one answer. The percentage of the world's threatened animal species that are in Australia is about:
 - 1%. 3%. 8%. 13%.

UNIT 3: TOPIC 1 Ratios

Ratios are used to compare numbers or quantities to each other.

In the example below, there are 6 smiley faces and 4 sad faces.

The ratio of smiley faces to sad faces is 6 to 4. This is written as 6:4.

Guided practice

Write the ratio of smiley faces to sad faces.

	Ratio of smiley faces to sad faces
	6:4
a	
b	
C	

2

In the first example, the ratio of 6:4 can be simplified. The simplest form of the ratio is 3:2 because there are 3 smiley faces for every 2 sad faces.

Write the ratio of smiley faces to sad faces below in its simplest form.

Independent practice

In a pack of pink and purple jellybeans, the ratio of pink to purple is 2:3. This means that there are 2 pink jellybeans for every 3 purple jellybeans.

If there are 8 pink jellybeans in total, we can use the ratio of 2:3 to work out the number of purple ones. Drawing the jellybeans can also help.

Flour	Milk	Eggs	Number of pancakes
120 g	250 mL	1	8
240 g			
		4	
	1.5 L		
			4

8

Kate has 18 sheep, 48 goats, 6 horses and 12 ducks.

a In its simplest form, write the ratio of Kate's sheep to the goats, horses and ducks.

b Zoe has the same types of animals as Kate, and in the same ratio, but she only has 4 ducks. How many of each of the other animals does Zoe have?

Proportion

Proportion is different to ratio. It compares one number to the *whole* group. The ratio of strawberries to bananas is 1:3. To find the proportion of strawberries, we look at the total number of fruit (8). Next, we look at the number of fruit that are strawberries (2). The fraction of the group that are strawberries is $\frac{2}{8}$, which can be simplified to $\frac{1}{4}$. So the proportion of strawberries is $\frac{1}{4}$. The proportion can also be written as a percentage (25%) or a decimal (0.25). Write the proportion of bananas as: a a fraction. _____ c a decimal. __ b a percentage. In a box of 20, the ratio of oranges to apples is 1:4. We can use ratio and 2 proportion to work out the number of oranges and apples. Add 1 orange and 4 apples: 1 + 4 = 5. This means there are 5 "portions". Proportion of oranges: $\frac{1}{5}$ Proportion of apples: $\frac{4}{5}$ One-fifth of 20 is 4, so there are 4 oranges. Four-fifths of 20 is 4 lots of 4, so there are 16 apples. How many oranges and apples are in each box if the total number is: **b** 25? a 10? **c** 50? d 35? Oranges: _____ Oranges: _____ Oranges: _____ Oranges: _____ Apples: _____ Apples: _____ Apples: _____ Apples: _____ Use the information to work out the number of oranges and apples in each box. a b Fruit box Fruit box Contents: Contents: 56 pieces 45 pieces Oranges: Oranges: Ratio of oranges Ratio of oranges to apples = 3.4to apples = 3:2Apples: Apples: d С Fruit box Fruit box Contents: Contents: 32 pieces Oranges: 72 pieces Oranges: Ratio of oranges Ratio of oranges to apples = 1:3

Apples:

to apples = 3:5

Apples: ____

UNIT 4: TOPIC 1 Geometric and number patterns

Patterns are all around us. There is a pattern in the way these craft sticks are placed. We could describe the pattern like this: *For every pentagon you use 5 sticks.*

Guided practice

Independent practice

This pattern could **not** be described by the rule that you use four sticks for every square. Why not?

To describe the pattern above, you need to look how it was made:

You start with one stick, then use 3 sticks for every square.

How many sticks were used for the three squares? $1 + 3 \times 3 = 1 + 9 = 10$

Complete this table.

Pattern	Rule	How many sticks are needed?
a	Start with 1 stick, then use 3 sticks	$1 + 4 \times 3 = 1 + 12 =$ $1 + \times 3 = 1 + =$
c	for every square.	

3 True or false? Both rules describe the pattern. 💶

- Start with one stick and then use two sticks for every triangle.
 - Use three sticks for the first triangle and then two for every other triangle.

Try to make the rules easy to understand.

Write a simple rule for each pattern.

	Pattern	Rule
a	$\Delta \Delta \Delta \Delta$	
b		
с	(XXXX)	
d		

To know if a number is divisible by 3, you add the digits together. If the answer is divisible by 3, then the whole number is divisible by 3. On a separate piece of paper, design a flow chart that shows the steps to find out whether a number is divisible by 3. Test it yourself before giving it to somebody to use.

Extended practice

Imagine you are planning a sit-down party. How will the tables be arranged? For all the following activities:

- only one person can sit along one side of a table
- use the abbreviation *n* for the number of people and *t* for the number of tables.
- A common shape for a table is rectangular. If the tables are separate, the formula for the number of people that can be seated is $n = t \times 4$. Using this formula, how many can be seated at:

UNIT 4: TOPIC 2 Order of operations

It doesn't matter which operation you do first in 2 + 5 - 3. The answer is still 4. But sometimes the order of operations *does* matter.

BODMAS is a way of knowing what to do first.

1st	В	Brackets	2 × (3 – 1) = 4
2nd	0	O ther operations	$4 \times 3^2 = 4 \times 9 = 36$ $\frac{1}{2}$ of 10 + 4 = 5 + 4 = 9
3rd	D	Divide	10 + <mark>6 ÷ 2</mark> = 10 + 3 = 13
Sru	Μ	M ultiply	2 × 3 + 2 = 6 + 2 = 8
4th	Α	A dd	4 + <mark>2 × 3</mark> = 4 + 6 = 10
411	S	S ubtract	5 × 4 – 3 = 20 – 3 = 17

Guided practice

1	Wha	at is the correct answ	er to the question in	the s	peech bubble above?	
2	а	3 + 2 × 2 = 3 + 4 =		b	(3 + 2) × 2 =	
	C	6 × 4 – 3 =		d	$6 \times (4 - 3) =$	
	е	48 ÷ 8 – 2 =		f	48 ÷ (8 – 2) =	
	g	8 + 12 ÷ 2 =		h	(8 + 12) ÷ 2 =	
3	а	$\frac{1}{2}$ of 8 × 3 = 4 × 3 =		b	$\frac{1}{2}$ of (8 × 3) =	
	С	$\frac{1}{2}$ of 6 + 3 =		d	$\frac{1}{2}$ of (6 + 3) =	
	е	$4^2 + 5 =$		f	$5^2 + 4 =$	
	g	$3 \times 2^2 =$		h	$(3 \times 2)^2 =$	
					1	
4	а	3 × (10 – 5) =		b	$\frac{1}{4}$ of 20 × 2 =	
	С	5 + 6 ÷ 2 =		d	$\frac{1}{2}$ of 24 ÷ 6 =	
	е	$(7^2 + 1) \times 2 =$		f	3 × 12 ÷ 2 =	
	g	$\frac{1}{2}$ of 10 × 2 ² =		h	$5 + (10 - 5)^2 =$	

You can use equations to make multiplication simpler. Use equations to split the number you are multiplying.

	Problem		Split the problem to make it simpler		Solve the prob	Answer	
	27 × 3	=	(20 × 3) + (7 × 3)	=	60 + 21	=	81
a	23 × 4	=	$(20 \times 4) + (3 \times 4)$	=		=	
b	19 × 7	=		=		=	
С	48 × 5	=		=		=	
d	37 × 6	=		=		=	
е	29 × 5	=		=		=	
f	43 × 7	=		=		=	
g	54 × 9	=		=		=	

Use equations to change the order of operations.

	Problem		Change the order to make it simpler	Solve the problem	Answer		
	20 × 17 × 5	=	20 × 5 × 17	=	100 × 17	=	1700
a	20 × 13 × 5	=	20 × 5 × 13	=		=	
b	$25 \times 14 \times 4$	=		=		=	
С	5 × 19 × 2	=		=		=	
d	$25 \times 7 \times 4$	=		=		=	
е	60 × 12 × 5	=		=		=	
f	5 × 18 × 2	=		=		=	
g	$25 \times 7 \times 8$	=		=		=	

You can use "opposites" to solve problems. To find the value of \diamond in the equation $\diamond + 3 = 9$, move the + 3 to the other side and do the opposite of plus. It becomes $\diamond = 9 - 3$, so $\diamond = 6$. You can check it by writing the equation: 6 = 9 - 3

	Problem	Use opposites	Find the value of ≬	Check by writing the equation
e.g.	◊ + 15 = 35	◊ = 35 - 15	◊ = 20	20 = 35 - 15
a	$\diamond \times 6 = 54$	◊ = 54 ÷ 6		
b	◊ + 1.5 = 6			
C	$\frac{1}{4}$ of $\diamondsuit = 10$			
d	◊ × 10 = 45			
e	◊ ÷ 10 = 3.5			
f	◊ ÷ 4 = 1.5			
g	◊ × 100 = 725			

Rewrite each equation using "opposites" to find the value of \Diamond .

Another strategy to find the value of ◊ is to put a number in its place to see if it balances the equation. The number is a "substitute" for ◊. For example, ◊ + 4² = 18.
 Substitute 2 for ◊. Does 2 + 4² = 18? Yes! So, ◊ = 2.

	Problem	Possible substitutes for ◊		tes	Check	
e.g.	◊² × 3 = 75	4	5	6	7	5 ² × 3 = 25 × 3 = 75
a	◊ × 3 + 5 = 32	8	9	10	11	
b	54 ÷ ◊ – 5 = 1	9	10	11	12	
С	2 × ◊ + 5 = 15	2	3	4	5	
d	15 ÷ ◊ – 1.5 = 0	5	10	15	20	
e	24 × 10 − ◊ = 228	12	14	16	18	
f	$\diamond \div 2 = 4^2 + 3$	35	36	37	38	
g	$(5 + \diamond) \times 10 = 25 \times 3$	1.5	2	2.5	3	

A word puzzle can be made simpler by writing an equation. For example, guess my number: If you double it and add 3 the answer is 11. We can use \diamond for the number and write an equation: $\diamond \times 2 + 3 = 11$. To solve the equation we can use "opposites": $\diamond \times 2 = 11 - 3$. So, $\diamond \times 2 = 8$. (Use "opposites" again.) $\diamond = 8 \div 2 = 4$

Solve these puzzles by writing an equation.

- a Guess my number. If you triple it and subtract 4, the answer is 11.
- **b** Guess my number. If you multiply it by 10 and subtract 15, the answer is 19.

Does your calculator use BODMAS? Use $1 + 2 \times 4$ to find out. Using BODMAS, the answer should be 1 + 8 = 9. Now try it on a calculator. If it gives the answer as 12, there is nothing wrong with the calculator, but think why it would do that.

- a What is 10 + 2 × 4 2?
- **b** What answer do you think a basic calculator will give?
- c Try the problem on a calculator. What answer does it give?
- Investigate answers to the same number sentence by placing the brackets in different positions.

Number challenge

Using the digit "4" four times with any of the four operations, it is possible to come up with the answers 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. For example: $(4 + 4 + 4) \div 4 = 3$. Try to find the others. (There is more than one way of getting some of the answers.) Our everyday units of length are kilometres (km), metres (m), centimetres (cm) and millimetres (mm). We can convert between them like this:

	× 1000 kmr ÷1000	× 100 × 10 m cm m ÷ 100 ÷ 10	nm (Only us	ember! se a zero is needed.		
ded	practice				ny needed.	115	-
Com	plete the table).	2	Com	plete the table		
	× 10 Kilometres ÷ 10	- A			(00 Centimetres	5
e.g.	2 km	2000 m		e.g.	. 2 m	200 cm	
а	4 km			а		100 cm	
b		7000 m		b	4 m		
C		19 000 m		С	5.5 m		
d	6 km			d		250 cm	
е	7.5 km			е	7.1 m		
f		3500 m		f		820 cm	
g	4.25 km			g	1.56 m		
h		9750 m		h		75 cm	
Com	plete the table Centimetres	10	4	for th	th unit of lengt nese? The length of		use
e.g.	2 cm	20 mm		b	The height of	vour table	
а	5 cm				0	, -	
b	42 cm			С	The length of	an ant	
С		90 mm					
	3.2 cm			d	The length of	a school hall	
d							
d e		75 mm			T I I I I I I I I	1	
		75 mm 125 mm		е	The height of	a door	. <u></u>
е	12.4 cm				The height of		

Independent practice

Matcl	n two lengths to each obje	ect.		157 m	1.57 m	
	1570 m	157 mm	15.7 cm	0.157	km	
.5 cm	1.57 km	15 mn	n 157 (
	Object	1	lst unit	2nd unit		
a	The length of a pencil					
b	The height of a Year 6 stude	ent				
C	The length of a finger nail					
d	The distance around a school	ol yard				
е	The length of a bike ride					

2 Measure each line. Write each length in three ways.

	mm	cm and mm	cm
		2 cm and 5 mm	
a			
b			
c			
d			

3

Measure each object and its length in three ways.

,	Object	mm	cm and mm	cm (with decimal)
a	A pencil sharpener			
b	Your pencil			
С	An eraser			
d	A glue stick			
е	The width of this page			

4	Line	B is 8 cm long.	Line A Line B Line C	_				_
	а	Estimate the lengt	ths of the othe	er two lir	nes. (Do not measure	the ler	ngths.)
		Line A estimate:		Line	C es	stimate:		
	b	Measure Line A a	nd Line C. Wr	ite the le	ngth	S.		
		Line A:						
5		B here is 6 cm lon		1			\geq	
			Line B	\leftarrow		6 cm	\prec	
			Line C	\rightarrow			\prec	/
	а	Estimate (do not r	neasure) the l	engths o	f Lin	es A and C.		
		Line A estimate:		Line	C es	stimate:	_	
	b	Now measure Line	es A and C.					
		Line A:	-	Line	C:			
	С	How did the arrow	vs affect your	estimate	es?			
6	Rec	ord the perimeter o	f each shape.					
	a	Perimeter =	b Perimete	er =	С	Perimeter =	d	Perimeter =
7	Writ	e about any shortci	uts you used i	n questio	on 6.			

This is a list of estimated dinosaur lengths, measured from head to tail. Not all dinosaurs were gigantic. In fact, the shortest dinosaur has the longest name!

Name	Length	Ranking (Longest to shortest)
Tyrannosaurus Rex	12.8 m	
Iguanodon	6800 mm	
Microraptor	0.83 m	
Homalocephale	290 cm	
Saltopus	590 mm	
Puertasaurus	3700 cm	
Dromiceiomimus	3500 mm	
Micropachycephalosaurus	50 cm	

- 1 Number the dinosaurs in order from **longest** to **shortest**.
 - Name a modern animal that is about the same length as the smallest dinosaur.
- 3 Which dinosaur was about ten times longer than a dromiceiomimus?
- If the longest dinosaur was lying on the ground, about how many Year 6 students

could lay next to it, head to toe?

5 What is the difference between your height and the length of a microraptor?

6 Draw a rectangle that has a perimeter of 68 mm.

UNIT 5: TOPIC 2 Areα

7 692 024 km² Area is the surface of something. It is measured in squares. Depending on the size, we use square centimetres (cm²), square metres (m²), hectares (ha) or square kilometres (km²). **Guided practice** This rectangle has This rectangle has This rectangle has one-centimetre one-centimetre marks every squares drawn on it. squares drawn on centimetre along part of it. two of the edges. The area is _____ cm². The area is $___ cm^2$. The area is --- cm². 2 cm How many centimetre squares would fit а on the bottom row? 2 cm How many rows would there be? b С What is the area? Write the area of each shape. 5 b а С 3 cm 6 cm 1 cm 3 cm 3 cm 2 cm Area = Area = Area =

Extended practice

To find the area of a triangle, imagine it as half of a rectangle. The area of triangle ABC is half of rectangle ABCD. Half of $8 \text{ cm}^2 = 4 \text{ cm}^2$.

UNIT 5: TOPIC 3 Volume and capacity

Volume is the space something takes up. It is measured in cubes. This centimetre cube model has a volume of 4 cubic centimetres (4 cm³).

Guided practice

1 Write the volume of each centimetre cube model.

Capacity is the amount that can be poured into something. We use litres (L) and millilitres (mL) to show capacity. Large capacities (such as swimming pools) are measured in kilolitres (kL). We can convert between them like this:

Complete these tables.

а	× Kilolitres ÷1	Litres	b		1000 s Millilitres 1000	C		Capacity = 1 mL
e.g.	4 kL	4000 L	e.g.	4 L	4000 mL	e.g.	100 cm ³	100 mL
	3 kL				2000 mL			500 mL
		9000 L		7 L			225 cm ³	
		3500 L		5.75 L				1 L
	6.25 kL				4500 mL		1750 cm ³	

Order these containers by capacity from smallest to largest.

Shade these jugs to show the level when the drinks have been poured in. Write the amount in millilitres (mL).

OXFORD UNIVERSITY PRESS

Extended practice

We would show the length and width of a driveway in metres, but how would we show its depth?

Would you use metres, centimetres or millimetres to show the depth of a driveway?

2 Ready-mixed concrete is sold by the cubic metre. How much concrete should be ordered for a path that is 30 m long, 3 m wide and 15 cm deep? Working-out space

This activity is for finding the volume of a pebble. You will need: a pebble (or similar), a small container of water, a bowl in which to place the small container, and a measuring jug.

- a Place the smaller container into the bowl.
- **b** Carefully fill the smaller container with water up to the brim.
- **c** Gently place the pebble into the water.
- d Carefully remove the smaller container from the bowl, making sure that no more water spills from it.
- e Measure the amount of the water that spilled from the container when you placed the pebble into it.
- **f** Think about the connection between the amount of water that spilled over and the volume of the pebble.

Write a few sentences about what you did. Include a sentence that states the volume of the pebble. Also say how you know what the volume is. (You may need to work this out on a separate piece of paper.)

1 mL of water takes up the same space as 1 cm³.

The mass of something tells us how heavy it is.

Our everyday units of mass are tonnes (t), kilograms (kg) and grams (g).

For the mass of something very light, like a grain of salt, we use milligrams (mg). Each unit of mass is 1000 times lighter than the next (heavier) unit.

1 a	(1000 s Kilograms	b	(1000	С	× 1	000
	÷1	000		Kilogram:	Grams		Grams +1	Milligrams
e.g.	2 t	2000 kg	e.g.	2 kg	2000 g	e.g.	4 g	4000 mg
	5 t				3500 g		5.5 g	
		7500 kg		4.5 kg				3750 mg
		1250 kg		0.85 kg			1.1 g	
	2.355 t				250 g			355 mg
		995 kg		3.1 kg			0.001 g	

What is something that would have its mass shown in:

а	tonnes?	-		b	kilograms?	
С	grams?			d	milligrams?	
can b 1.5 kg	mass of the be written as g or 1 kg 50 plete the tak	s 1 <u>1</u> kg, 00g.			The same mass can be shown in more than one way.	
				Kilograms and fractions	Kilograms and decimals	Kilograms and grams
			a	3 <u>1</u> kg		3 kg 500 g
	0		b		2.5 kg	
-3	kg • 1-		С	3 <u>1</u> kg		
X	2		d		4.7 kg	
			е			1 kg 900 g

3

Independent practice

We usually weigh heavier objects and lighter objects on different scales. Take note of the increments (markings) on each scale as you record the mass.

A	eceives a parcel from his g a possible mass for each i t space			-
Vorking-ou	t space		12.1	UU NY.
		Item The packing bo Pen set Shoes Set of postage Pair of socks Packet of cook	stamps	Which item do you think has the greatest mass?
can ca	ift has a sign that shows th arry safely. Answer the follo ons. Show your working o	owing	– LIFT Safe carrying ca ¹ / ₂ tonne (8 pe	
t	Vhat does the lift company hink is the average mass f a person?	Y	Working-out space	
۲ ۲	f the average mass of a Year 6 student is 40 kg, how nany Year 6 students could ft carry?			
them	kg tray of four mangoes, r has the same mass. What mass of each mango?			

Extended practice

Scientists have shown that 1 mL of water has a mass of exactly 1 g. Could you prove that 1 mL of water has a mass of 1 g? In everyday life, it is very difficult to be accurate when weighing objects as light as one gram. Using a balance, try to prove that 50 mL of water has a mass of 50 g. Write a sentence or two about your findings.

Sodium is part of salt, and we should not each too much of it. This information shows the amount of sodium in some common foods.

Type of food	Milligrams of sodium per 100 g	Normal serving size (g)	Milligrams of sodium per serve
Potato crisps	1000 mg	50 g	500 mg
Hamburger	440 mg	200 g	880 mg
Beef sausage	790 mg	70 g	553 mg
Chicken breast	43 mg	160 g	69 mg
Breakfast cereal	480 mg	30 g	144 mg
Butter	780 mg	7 g	55 mg
Yeast spread	3000 mg	6 g	180 mg
White bread	450 mg	30 g (1 slice)	135 mg

We are not supposed to have more than about 2.3 g of sodium per day.

- a Which type of food has 1 g sodium for every 100 g serving?
- **b** What is the difference between the amount of sodium in 100 g of hamburger and 100 g of breakfast cereal?
- **c** Look at the normal serving sizes. How much sodium would Pete have if he ate a sandwich of two slices of white bread, yeast spread and butter?

d If Helen were to eat one serving of each type of food in a day, by how much would she be over the recommended daily amount of sodium?

UNIT 5: TOPIC 5 Timetables and timelines

A **timetable** is an easy-to-read list of what is going to happen. A **timeline** shows the order of things that have happened over a period of time.

> Timetables use either 12-hour time or 24-hour time.

Dinosaur Timeline

Guided practice

OXFORD UNIVERSITY PRESS

Independent practice

- How long does it take for Train 8219 to get from Melbourne to Geelong?
- 2 Which train takes the shortest time to get from Melbourne to Geelong?
- 3 What is the difference between the times of the shortest and longest journeys from Melbourne to Geelong?
- 4 On which train is it possible to buy a drink?

		1			
SERVICE NO.	8215	8219	8221	8225	8227
Train/Coach	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
Seating/Catering	* 🛛				
MELBOURNE	IC				
(Southern Cross) dep.	13:00	14:00	15:00	16:00	
North Melbourne					
Footscray	13:08u	14:08u	15:08u	16:08u	
Newport					
WERRIBEE		14:26u		16:26u	
Little River		14:34		16:34	
Lara	13:42	14:40	15:35	16:40	
Corio		14:44		16:44	
North Shore		14:46		16:46	
North Geelong	13:50	14:50	15:43	16:50	
GEELONG arr.	13:56	14:54	15:47	16:54	
Legend					

Why could you **not** travel from Southern Cross Station to Footscray on any of the trains?

If you were going to Geelong on Train 8219 and wanted get off in Lara to meet

a friend, how long would you have to wait for the next train?

Train 8227 leaves Southern Cross at 4:30 pm. It has the same travelling time and stops as Train 8225. Fill in the blanks on the timetable. Use 24-hour time.

8

Use the information about space travel to complete the timeline. Make sure to take note of the scale, write the year for each mark on the scale, and draw the arrows to the appropriate places on the timeline.

Information about Space travel

1957	Sputnik 1 - first spaces (
1960	<i>Sputnik 1</i> – first spacecraft to orbit the Earth
1961	First animals went into space and returned First human went into space
1965	First spacewalk
1969	First person on the Moon
1981	First space of
1986	First space shuttle launched
1989	Space shuttle <i>Challenger</i> exploded
1997	inst space probe to Neptupe
1007	First operational rover on another planet (Mars)

A timeline of space exploration

Extended practice

There are three buses a day from Small Town to Big Town.

	Departs Small Town	Arrives Big Town
Bus A	0752	1043
Bus B	1114	1408
Bus C	1526	1829

- About how many hours does the bus take to get from Small Town to Big Town?
- **b** How long is the journey on Bus A?
- **c** How much longer is the journey on Bus C than Bus B?
- Look at the timetable in question 1.

3

- **a** Write the departure time for Bus C in am/pm time.

- **b** Draw the time on the analogue clock.
- c If you took Bus B to Big Town and the person meeting you did not arrive until 2:30 pm, how long would you have to wait?

Each bus waits at Big Town for 85 minutes before starting the return journey. Each return journey takes 2 hours and 59 minutes. Complete the timetable for the journeys from Big Town to Small Town using 24-hour time.

	Departs Big Town	Arrives Small Town
Bus A		
Bus B		
Bus C		

UNIT 6: TOPIC 1 2D shapes

A polygon is a 2D shape with straight sides. *Regular* polygons have sides and angles that are the same size. *Irregular* polygons do not.

Guided practice

Name these shapes and label them as either *regular* or *irregular*.

		Name of shape	Regular or irregular?
e.g.	\triangle	triangle	regular
a			
b			
С			
d			
е			
f			
g			
h	\land		

2

Circle the sentence that best describes this polygon.

- It has five sides.
- It has five angles that are the same size.
- It has five equal sides and some of the angles are the same size.
- It has five equal sides and five angles that are the same size.
- It has five equal sides but no angles that are the same size.

Is a circle a polygon?

Independent practice

Write the type of triangle and two of its properties.

	Triangle	Type and properties
		Scalene. The sides are different lengths. It has an obtuse angle.
a		
b		
С		
d		
е		
e		

Identify and describe each shape.

	Quadrilateral	Special name	Description
		lrregular quadrilateral	The four sides are all different lengths. The angles are different sizes. It has a reflex angle.
а			
b			
С			
d	/		
е			

Every square is a rhombus, but not every rhombus is a square.

Write about the similarities and differences between each pair of shapes.

	Shapes	Similarities	Differences
		The angles in both triangles are acute. Each triangle has at least two angles that are the same size.	One triangle has two sides that are the same length. The other has all three sides the same length.
a			
b			
С			
d	\sum		
е			
f			
g			
h			
i			
j			
k	Δ		

UNIT 6: TOPIC 2 3D shapes

A pyramid has one base. The shape of the base gives the pyramid its name.

A prism has two bases (ends). The shape of the bases gives the prism its name.

A prism doesn't always sit on its base.

Triangular pyramid

Guided practice

Use the shapes of the bases to identify these 3D shapes.

It's OK to make mistakes. It means you're learning!

3

Practise drawing these 3D shapes.

Extended practice

1

Euler's law says that if you add the number of faces and vertices on a 3D shape, then take away the number of edges, the answer is always 2. Test the law on these objects.

	Object	Name	Number of faces	Number of vertices	Number of edges	Does Euler's Law work?
а		Rectangular prism	6	8	12	Yes
b						
C	\square					
d						
е	A					
f						
g						
h						

UNIT 7: TOPIC 1 Angles

UNIT 8: TOPIC 1 Transformations

Patterns can be made by transforming a shape. This could be by: Translation (sliding it) Rotation (turning it) Reflection (flipping it over) **Guided practice** Transforming is another word What method of transformation has been used? for changing. a 300 000 000 000 b С Reflect the triangle. а Rotate the pentagon. b Translate the parallelogram. С

Independent practice

Patterns can be made by transforming shapes *horizontally* or *vertically*.

1

Describe the patterns.

	Pattern	Description
	\mathbf{X}	The trapezium has been reflected vertically.
а		
b		
с		
d		
e		
f		

Continue the pattern and describe the way it grows.

Complete and describe these patterns. (There is no need to include the colours in your description.)

Extended practice

For these activities you will need a computer with Microsoft Word, or similar.

- a Choose an object that you find interesting. Place it on the page and fill it with the colour of your choice.
- **b** Copy and paste the object on the same point and rotate it through an angle (say, 30°).
- c Repeat this process until you have made a design you are happy with.
- d Save your design and, if you have permission, print it.

- a Open a new Word document.
- **b** Choose a basic shape (such as the trapezium in this pattern).
- **c** Draw a shape at the top of the page by clicking and dragging.
- d Copy the shape and paste it next to the original.
- e Reflect the second shape vertically and position it next to the first.
- **f** Select **both** objects. Copy and paste them so that they join the original pair.
- **g** Look for shortcuts to continue your pattern.
- h After placing 8 shapes, group them, copy them and paste them below the first row.
- i Reflect the second row vertically and horizontally.
- j Continue until you have 8 or more rows.

Who was René Descartes? Why are Cartesian coordinates named after him? Try to find out!

The Cartesian plane was named after René Descartes. It is split into four quadrants (or quarters). The *x*-axis and the *y*-axis meet in the middle at the **origin point**.

Numbers to the left of the origin point are negative. Numbers below the origin point are negative. Points are named by pairs of numbers called *ordered pairs*. Always read the number on the *x*-axis first.

Independent practice

- 3 Show how you could join points that would draw a rectangle between the four dots in question 1. Remember to "close" the rectangle.
- 4 a Draw a simple 2D shape in Quadrant IV.
 - **b** Write the ordered pairs that would draw your shape.

Extended practice

1

Will's bedroom always seemed to be untidy. One day his mother was so tired of it that she hid everything that Will had left on the floor. When he got home all he found was a chair in the centre of the room.

Will's mother told him to sit on the chair, and she gave him a copy of the number plane. She also gave him a list of the coordinate points for everything he had left on the floor. She said he could have them back if he correctly plotted them on the number plane.

Plot all the items Will had left around the room. Use a letter for each item (or draw small illustrations at each coordinate point).

- A music player: (2,5)
- D right shoe: (–3,6)
- G calculator: (-6,4)
- J video game: (5,7)
- M shirt: (–2,–7)

- B smart phone: (–3,3)
- E left shoe: (3,–6)
- H comb: (4,2)
- K wallet: (5,–3)
- N jeans: (3,–2)

- C watch: (1,–2)
- F pencil case: (-4,4)
- deodorant: (–3,–2)
- L bag: (–5,1)
- O sock: (–2,1)

A common way to represent data is on a graph. There are several types of graphs. The type of graph used depends on what is being represented.

Guided practice

Add your favourite colour and the favourite colour of five other people to the information in question 1, then rewrite the frequency table.

Frequency table: Favourite colours for Year 6								
Colour	Red	Yellow	Blue	Green	Purple			
Frequency								

- 3 a Transfer the information from question 2 onto a bar graph. Decide on a suitable scale.
 - Is it better to use a pictograph or a bar graph to present this type of information? Give a reason for your answer.

This data shows hourly temperatures at a ski resort.

Time	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700
Temperature	0°C	1°C	2°C	3°C	7°C	8°C	8°C	6°C	5°C	2°C	1°C

a Show the information on a line graph. Remember to label the graph.

b Write two statements about the information shown on the graph.

5

Collect data about the hair colour of students in your class. Organise it on this frequency table.

Hair type	Dark		Fair		Medium		Other	
	Long	Short	Long	Short	Long	Short	Long	Short
Number								

one Short Long Short Long <th></th> <th>her</th> <th>Ot</th> <th>lium</th> <th>Med</th> <th>ir</th> <th>Fa</th> <th>rk</th> <th>Da</th>		her	Ot	lium	Med	ir	Fa	rk	Da
		Short	Long	Short	Long	Short	Long	Short	.ong
a	b								
a									
a									
a									
	a								
	-								

- Choose an appropriate graph type to represent your data. The grid may help you.
- Write two statements about the information shown on the graph.

Make sure your graph is easy to interpret.

OXFORD UNIVERSITY PRESS

b

Extended practice

- The circle graphs on this page show five of the Top 100 names for baby girls and boys in the first decade of this century.
 - a The combined total of which three names was about the same as the number of babies called Zoe?
- 2 The same data about baby names is shown on the bar graph.
 - What information is shown on this graph that is not shown on the sector (circle) graph?
 - The number of babies named Jade was 1234. There were 14 more babies called Eva than Annabelle. Estimate the numbers of babies named Eva and Annabelle.

b

3 Apart from the way that the graphs are shaded, what are the similarities or differences between the circle graphs for the popular names for girls and boys? Write some statements of finding.

- a The number of babies named Xavier can be rounded to 1600. What is your estimate of the exact number?
- **b** Comment on the differences between the most popular names for girls and boys from the data shown on the two bar graphs.

📕 Joshua

Ryan

📕 Xavier

Peter

Finn

Approximately half of the circle

is used for the name Olivia.

About what fraction is

used for Eva?

UNIT 9: TOPIC 2 Data in the media

Data that you collect yourself is called *primary* data. Some graphs are based on secondary data. This is when people use someone else's data.

Guided practice

- Are the following likely to be based on *primary* or *secondary* data?
 - You make a graph about the а Top 10 holiday places after reading a magazine article.
- You make a graph about the b favourite food of the people in your group.

When TV shows or newspapers collect data about what people think, they cannot ask everybody. They do a sample survey. If you get the views of everyone, it is called a *census* survey.

Sometimes, it takes too long to ask everybody!

Read the following scenarios. Were the surveys likely to be *sample* or *census*?

- A phone company wanted to know а what size of phone people prefer.
- b A Year 2 class did a graph about their favourite colours.

NUMBER 1 PLAU

- A principal wanted to know С what parents thought about a new school uniform.
- A newspaper boss wanted to d know what local people thought about having a new skate park.

A Year 6 teacher wants to know if the class would like to work on their science projects at lunchtime or at home. She surveys a group of eight of the 24 students.

- Would the collected data be *primary* or *secondary*? а
- b Was this a *sample* or a *census* survey?

Independent practice

1 The principal of the school in which the Year 6 teacher did a survey about the science project (see page 130) made a graph and published it in the school newsletter. Was the principal's graph based on *primary* or *secondary* data?

- 2 Look at the information in the graph above. The teacher had surveyed eight of the 24 students in the class.
 - a How many of the eight students wanted to do the project at home?
 - b How many answered *I don't know*?
- 3 The principal wrote in the newsletter: "The majority of the students surveyed prefer to work on their project at home." Is this a true statement of finding? Give a reason for your answer.
- 4 A parent contacted the principal and said, "If all 24 of the students had been surveyed, the result would have been different." Is this statement true? Underline one response:
 - It is true
- It is not true
- It could be true.

5 The boss of the town's newspaper saw the school newsletter and wrote a newspaper headline based on the story:

Recent survey shows that most students in our town want more homework.

Underline one response. The headline is based on fact ...

- and is partly true
- and is definitely true
- but has no truth to it
- and could be true.

Did you know that Australians spend more money on video games per person per year than Americans do? Kids from the UK spend the most! The following data is true, but the newspaper headline is fake.

Amount per person per year spent on video games

- a According to the graph, approximately how much per year does each Australian spend on video games?
 b In how many of the Top 10
- countries does each person spend over \$100 a year on video games?
- c According to the graph, approximately how much per year does each Italian spend on video games?
- A TV presenter in the UK was shown the newspaper article about video games. He told viewers, "Video games are making our children lazy. We should stop this NOW. Call us and give your opinion!" Later, the presenter told viewers that his research showed that 90 per cent of parents want children to be banned from playing video games.

a Did the TV presenter conduct a census survey or a sample survey?

- **b** Do you think the presenter's statement was a fair one? Give a reason for your answer.
- c How many parents actually answered "Yes" to the presenter's question?

3

Extended practice

A newspaper in a town with a population of about 8000 printed an article about a new fast-food restaurant being built next to the local high school. The article was based on a survey carried out by a group of students. 100 people had been asked about the new restaurant.

- a Did the students carry out a sample or a census survey?
- **b** Did the newspaper use primary or secondary data?
- **a** The majority of people said that the fast-food restaurant was a good idea. How many people might this have been?
 - **b** What is the largest percentage of those surveyed who might have objected?
 - c The newspaper did not mention anything about who had been surveyed. Some people complained to the newspaper editor about this. What do you think the main complaint was?

The following week the newspaper published an apology. It wrote that the 100 people who had been asked were students from the high school and that 97 of them thought the fast-food restaurant was a good idea.

- a In what way were the survey results not a fair reflection of public opinion?
- **b** What would have been a fairer way to carry out the survey?
- c Look again at the newspaper headline. Comment on the level of truth in the

statement.

- The survey question was, "The restaurant has promised to give away 50 free burgers every week. Do you want a fast-food restaurant next to the school?"
 - a Why was including the part about the free burgers not appropriate?
 - **b** Write a survey question that would be appropriate to find out people's opinions about the new restaurant.

New survey shows that most people want a new fast-food restaurant.

Range, mode, median and mean are all part of working out averages.We can use these weekly test scores to show range, mode, median and mean.

Guided practice

Range

The range is the difference between the highest and lowest in a set of numbers. In the test scores above, the range is 8 - 2 = 6. So, the range is 6.

Find the range in these sets of numbers.

a 22%, 16%, 64%, 80%, 31% _____ b 75, 81, 150, 110, 95 _____

Mode

The mode is the number that occurs most often. In the test scores above, 8 occurs more often than the others, so 8 is the mode. The mode is sometimes used to describe the average.

2	Find the mode in these sets of nu	mbers.
-	a 35%, 34%, 44%, 35%, 31% .	b 75, 76, 75, 76, 76

Median

The median is the number in the middle of an ordered set of numbers. In order, the scores above are 2, 3, 4, 8, 8. The middle number is 4, so 4 is the median score. The median can also be used to describe the average.

3	Find the median in these sets of numbers.		
	a 76%, 44%, 24%, 15%, 71%	b 1	5, 16, 25, 26, 15

Mean

To find the mean, add up all the numbers in the set and divide by however many numbers there are. In the scores above, the total of the five numbers is 25. Then divide 25 by 5, which equals 6. So the mean score is 6. The mean is most often used to describe average.

average

height

Independent practice

This table shows the minimum temperatures over a four-week period. Order the numbers for each week from lowest to highest. Then find the range, mode, median and mean temperatures.

Week	Seven-day minimum temperatures	Order	Range	Mode	Median	Mean
1	3°, 6°, 7°, 9°, 7°, 8°, 2°					
2	1 °, 3 °, 2 °, 9 °, 7 °, 7 °, 6 °					
3	9 °, 6 °, 8 °, 8 °, 10 °, 7 °, 8 °					
4	10 °, 9 °, 10 °, 8 °, 7 °, 3 °, 2 °					

This set of six numbers has no middle number.

5, 6, 7, 8, 9, 10

To find the median if there is an even-numbered set of numbers, add the *two* middle numbers and then divide the total by 2.

The two middle numbers in the set above are 7 and 8, which total 15. So, $15 \div 2 = 7\frac{1}{2}$ or 7.5. This is the median number.

Find the range and median in these sets of numbers.

Number set	Order	Range	Median	not always appear in the
8, 2, 6, 4, 10				set of numbers.
25, 14, 17, 12, 6, 4				2
12, 8, 2, 6, 2, 5, 21				A REAL PROPERTY OF
82, 23, 3, 8, 15, 3, 16, 2				11-2

3

This set of numbers does not have a mode because no number occurs more often than any other. Sometimes it is not possible to show the mode.

25, 16, 11, 17, 19, 16

Find the mode and mean. If there is no mode write "none".

Number set	Mode	Mean
8, 2, 6, 4, 10		
25, 14, 17, 12, 6, 4		
12, 8, 2, 6, 2, 5, 21		
82, 23, 3, 8, 15, 3, 16, 2		

The median

number does

This graph compares the average hours of sunshine per day in London and Sydney.

a Look at the graph. Without doing any calculations, estimate the daily average hours of sunshine for the whole year.

	Sydney	London
Mode		
Mean		

b Calculate the daily average hours of sunshine for the whole year.

	Sydney	London
Mode		
Mean		

- c Which of the averages was more difficult to estimate? Why?
- d Is the mode closer to the median for Sydney or London?
- e The colder months in London are October to March. What is the difference between the daily average hours of sunshine in the colder and warmer months of the year?
- f The warmer months in Sydney are October to March. What is the difference between the daily average hours of sunshine in the colder and warmer months of the year?

Extended practice

Is it best to use mode, median or mean to describe averages?

Interpreting an average from a set of data can be useful, but it can also be misleading. Sometimes people interpret data in a way that suits them.

This graph shows Sam's spelling test scores over five weeks. Sam uses the mode to describe the average score. He tells his family, "My average score in spelling tests is 10 out of 10."

a Is Sam correct in saying that his average score is 10 out of 10?

- **b** Why is 10 out of 10 not a true reflection of Sam's average score?
- c What is Sam's average score as a median average?
- d What is Sam's average score as a mean average?
- 2 Here are Sam's scores out of 20 in the next 10 tests.

19, 20, 19, 19, 20, 20, 1, 19, 19, 19

a What is the range? b What is the mode average?

c What is the median average?

					-
d	VVhat	IS	the	mean	average?

e Which average would you use to best describe Sam's level in spelling? Give a reason for your answer.

Alex recorded the temperature at midday for one week in summer. Complete the table so that the mean average works out to be 29 °C.

Day	Temperature
Sunday	28 °C
Monday	29 °C
Tuesday	
Wednesday	24 °C
Thursday	
Friday	
Saturday	27 °C

3

What is the likelihood of this 10-section spinner landing on blue? You can describe the chance in different ways.

In words:	It is unlikely.
As a fraction:	There is a $\frac{1}{10}$ (or 1 out of 10) chance.
As a percentage:	There is a 10% chance.
As a decimal:	There is a 0.1 chance.

Guided practice

I'm **certain** you'll get all these right!

Using the probability words *certain*, *highly likely*, *likely*, *even chance*, *unlikely*, *highly unlikely* and *impossible*, describe the chance of the following things happening. (Try to use only one of each.)

- a The next baby born will be a boy.
- **b** You will receive a card for your birthday.
- **c** You will fly to the moon 10 minutes from now.
- **d** Somebody will smile in the next 10 minutes.
- e New Year's Day will be on 1 January next year?
- f You will appear on TV next month.
- g You will hear a dog bark in the next 10 minutes.

This spinner is not divided equally.

Each jar contains 100 jelly beans. Write a value to show the probability of choosing (without looking) a white jelly bean from each jar. Choose from this list:

Bag D

Bag A

Bag B

Bag C

Tran's game: Part 1

Tran plays a game of chance with some friends, in which a wheel spins and a ball lands on one of 37 numbers. Some players choose to guess what number the ball will land on. If they get it right, they win counters.

However, Tran wants to be the one who wins in the end. So he works out the likelihood of the ball landing on particular numbers. Zero is a green number and numbers 1 to 36 are either red or black.

- a The chance of the ball landing on a particular number is one out of:
 - **b** If 37 people each choose a different number and put a counter on their number on the table, how many counters does Tran have now?
 - c The rules say that Tran gives out 35:1 to someone choosing the correct number. So, the winner gets their counter back, plus 35 more counters. However, Tran does not lose any counters. Explain why.
 - **d** If this continues for 1000 turns, Tran has done nothing except spin the wheel, but how many counters does he have now?
- Tran realises that not many people would play if they only had a 1:37 chance of winning, so he thinks of other ways to get people to play. People can choose "red" or "black" numbers.
 - a The chance of the ball landing on a red number is almost (but not quite)

1 out of 2. Explain why.

- **b** Imagine 18 out of the 37 people in question 1 choose red, 18 choose black and one person puts their counter on the green zero. If the ball lands on a black number, how many people lose?
- c If the ball lands on black, 18 people win. However, Tran still does not lose any counters. Explain why.
- **d** If this continues for 10 000 turns, Tran has done nothing except spin the wheel, but how many counters does he win?

UNIT 10: TOPIC 2 Conducting chance experiments and analysing outcomes

You will need some dice for these activities.

Working out number values for the chance of something occurring does not necessarily mean that it will happen that way. There is only a 1 out of 6 chance of the dice landing on a 6.

Is it harder to roll **Guided** practice a six than a one? What is the chance of **not** rolling a six on one dice? . Although it is unlikely, explain how somebody could get a six on the first roll b of the dice. You are going to roll a dice. Predict the number of rolls it will take а until you roll a six. Roll a dice until you get a six. How many rolls did it take? b What was the difference between your prediction and reality? Try to explain it. С Number of times it will land like that Complete the table to Dice lands on: show the number of Probability Actual number times the dice should 1 land on each number if 2 it is rolled 36 times. 3 Roll the dice 36 times b and record the results. 4 5 Write a sentence or two С commenting on the results 6 of the experiment.

Independent practice

- If you roll two dice, there is only one way for the dice to land to give the highest possible total of 12.
 - a What is the lowest possible total? _____
 - b How many ways can the dice land to give the lowest total?
- 2 If you play a game with two 6-sided dice and you need to roll 11 to win the game, there are two ways the dice can land.

What are all the possible totals for two dice? Complete the table.

Total of two dice	Ways the dice can land	Total number of ways
12	6 + 6	1
11	6 + 5, 5 + 6	2
10		
9		
8		
7		
6		
5		
4		
3		
2		

There are 36 different ways the dice can land.

Which total has the best chance of being rolled?

There is a 1 out of 36 chance of getting a total of 12 with two dice. What are the chances of a total of:

For this activity you will need two dice. You will be rolling the dice 72 times. Write the probable number of times that the dice should make each total. Carry out the experiment and write the actual totals.

Total of two dice	Probable number of times out of 72	Actual number of times out of 72
12	2	
11		
10		
9		
8		
7		
6		
5		
4		
3		
2		

Colour each spinner according to these rules. There must be:

- a < 25% chance of it landing on yellow.
- b > 50% but < 75% chance of it landing on blue.
- c > 25% but < 50% chance of it landing on red.

Play Tran's game: Part 2

You will need:

- A 7-sided spinner (Trace it and glue onto card)
- Seven players with 10 counters each
- A "banker" with a bank of 50 counters
- Seven cards numbered 0–6 for each player.

- The "banker" needs to find out the chances of someone winning.
 - a What is the chance of the spinner landing on any particular number?
 - **b** The person guessing the correct number receives six counters. If seven people choose a different number each and the spinner lands on six, how much does the "banker" put in the bank? _____

How to play the game

2 The "banker" writes, "My starting balance is 50 counters" on a sheet of paper. Each player draws a Win–Lose table with 13 rows and 5 columns similar to this:

My Win–Lose Table							
Turn	Guess	Win	Lose	Balance			
Starting	balance:			10 counters			
1st turn	1 counter						
2nd turn	1 counter						
etc.							

- 3 Each player guesses the number the spinner will land on by placing a card with that number on it in front of themselves.
 - a Each player puts one counter in the middle and writes this in the "guess" column.
 - **b** Somebody spins the spinner.
 - **c** The person with the winning number gets six counters. The "banker" gets whatever is left over.
 - **d** Players complete the row on their Win–Lose table. The "banker" writes their own new balance.
 - e Repeat Steps 2 to 7 until the end of the tenth turn.

Complete the sentences.

- My final balance was _____ counters.
- The balance for _____ players had decreased by the end of the game.
- The balance for the "banker" increased/decreased (underline one).

GLOSSARY

acute angle An angle that is smaller than a right angle or 90 degrees.

addition The joining or adding of two numbers together to find the total. Also known as

adding, plus and sum. See also vertical addition

*** 3 and 2 is 5

algorithm A process or formula used to solve a problem in mathematics.

Examples: horizontal algorithms 24 + 13 = 37

vertical algorithms

75-degree angle

3 1

2 4

analogue time Time shown on a clock or watch face with numbers and hands to indicate the hours and minutes.

angle The space between two lines or surfaces at the point where they meet, usually measured in degrees.

anticlockwise Moving in the opposite direction to the hands of a clock.

area The size of an object's surface.

> Example: It takes 12 tiles to cover this poster.

area model A visual way of solving multiplication problems by constructing a rectangle with the same dimensions as the numbers you are multiplying and breaking the problem down by place value.

array An arrangement of items into even columns and rows to make them easier to count.

balance scale Equipment that balances items of equal mass; used to compare the mass of different items. Also called pan balance or equal arm balance.

bar graph A way of representing data using bars or columns to show the values of each variable.

base The bottom edge of a 2D shape or the bottom face of a 3D shape.

capacity The amount that a container can hold. Example: The jug has a capacity of 4 cups.

Cartesian plane A grid system with numbered horizontal and vertical axes that allow for exact locations to be described and found.

categorical variables The different groups that objects or data can be sorted into based on common features.

Example: Within the category of ice-cream flavours, variables include:

centimetre or *cm* A unit for measuring the length of smaller items.

Example: Length is 80 cm.

circle graph A circular graph divided into sections that look like portions of a pie.

circumference The distance around the outside of a circle.

clockwise Moving in the same direction as the hands of a clock.

common denominator Denominators that are the same. To find a common denominator, you need to identify a multiple that two or more denominators share.

compensation strategy A way of solving a problem that involves rounding a number to make it easier to work with, and then paying back or "compensating" the same amount.

Example: 24 + 99 = 24 + 100 - 1 = 123

composite number A number that has more than two factors, that is, a number that is not a prime number.

coordinates A combination of numbers or numbers and letters that show location on a grid map.

corner The point where two edges of a shape or object meet. Also known as a *vertex*.

cross-section The surface or shape that results from making a straight cut through a 3D shape.

cube A rectangular prism where all six faces are squares of equal size.

cubic centimetre or *cm*³ A unit for measuring the volume of smaller objects.

Example: This cube is exactly 1 cm long, 1 cm wide and 1 cm deep.

cylinder A 3D shape with two parallel circular bases and one curved surface.

data Information gathered through methods such as questioning, surveys or observation.

decimal fraction A way of writing a number that separates any whole numbers from fractional parts expressed as tenths, hundredths, thousandths and so on.

degrees Celsius A unit used to measure the temperature against the Celsius scale where 0°C is the freezing point and 100°C is the boiling point.

denominator The bottom number in a fraction, which shows how many pieces the whole or group has been divided into.

diameter A straight line from one side of a circle to the other, passing through the centre point.

digital time Time shown on a clock or watch face with numbers only to indicate the hours and minutes.

division/dividing The process of sharing a number or group into equal parts, with or without remainders.

dot plot A way of representing pieces of data using dots along a line labelled with variables.

double/doubles Adding two identical numbers or multiplying a number by 2.

Example: 2 + 2 = 4 $4 \times 2 = 8$

duration How long something lasts.

Example: Most movies have a duration of about 2 hours.

edge The side of a shape or the line where two faces of an object meet.

equilateral triangle A triangle with three sides and angles the same size.

equivalent fractions Different fractions that represent the same size in relation to a whole or group.

 $\frac{4}{8}$

estimate A thinking guess.

even number A number that can be divided equally into 2.

Example: 4 and 8 are even numbers

face The flat surface of a 3D shape.

factor A whole number that will divide evenly into another number.

```
Example: The factors of 10 are 1 and 10 2 and 5
```

financial plan A plan that helps you to organise or manage your money.

flip To turn a shape over horizontally or vertically. Also known as *reflection*.

horizontal flip

fraction An equal part of a whole or group.

Example: One out of two parts or $\frac{1}{2}$ is shaded.

grams or *g* A unit for measuring the mass of smaller items.

graph A visual way to represent data or information.

GST or Goods and Services Tax A tax, such as 10%, that applies to most goods and services bought in many countries.

Example: Cost + GST (10%) = Amount you pay \$10 + \$0.10 = \$10.10

hexagon A 2D shape with six sides.

horizontal Parallel with the horizon or going straight across.

horizontal line

improper fraction A fraction where the numerator is greater than the denominator, such as $\frac{3}{2}$.

integer A whole number. Integers can be positive or negative.

-5 -4 -3 -2 -1 0 1 2 3 4 5

inverse operations Operations that are the opposite or reverse of each other. Addition and subtraction are inverse operations.

Example: 6 + 7 = 13 can be reversed with 13 - 7 = 6

invoice A written list of goods and services provided, including their cost and any GST.

Priya's Pet Store								
Tax Invoice								
Item	Quantity	Unit price	Cost					
Siamese cat	1	\$500	\$500.00					
Cat food	20	\$1.50	\$30.00					
Total prie	ce of goods	\$530.00						
	\$53.00							
	Total	\$583.00						

isosceles triangle A triangle with two sides and two angles of the same size.

jump strategy A way to solve number problems that uses place value to "jump" along a number line by hundreds, tens and ones.

Example: 16 + 22 = 38

+10 +10 +1 +1

kilograms or *kg* A unit for measuring the mass of larger items.

kilometres or *km* A unit for measuring long distances or lengths.

Tran's house	Shopping M	lall
Glenbrook Way		
	Swim Centre	Jo's house
Consiste Basada	5 km	Amy's bouse
	Sports fields	
Lawson Lane		
Dubbo Drive Ma	Rosella Poad	Area Area Area Area Area Area Area Area

kite A four-sided shape where two pairs of adjacent sides are the same length.

legend A key that tells you what the symbols on a map mean.

length The longest dimension of a shape or object.

line graph A type of graph that joins plotted data with a line.

Today's temperature 0 35 2 25 2 0 15 0 10:00 12:00 02:00 04:00 06:00 am pm pm pm pm Time **litres or** *L* A unit for measuring the capacity of larger containers.

Example: The capacity of this bucket is 8 litres.

mass How heavy an object is.

Example: 4.5 kilograms 4.5 grams

mean The total of a set of numbers divided by however many numbers there are in the set.

Example: 5, 3, 6, 2, 4 – the mean is $20 \div 5 = 4$

median The number in the middle of an ordered set of numbers.

Example: 3, 4, 5, 6, 7 – the median is 5

metre or m A unit for measuring the length of larger objects.

milligram or mg A unit for measuring the mass of lighter items or to use when accuracy of measurements is important.

millilitre or mL A unit for measuring the capacity of smaller containers.

1000 mL is 1 litre

millimetre or mm A unit for measuring the length of very small items or to use when accuracy of measurements is important.

There are 10 mm in 1 cm.

mixed number A number that contains both a whole number and a fraction.

mode The number that occurs most often in a set of numbers.

Example: 2, 3, 2, 5, 2 – the mode is 2

multiple The result of multiplying a particular whole number by another whole number.

Example: 10, 15, 20 and 100 are all multiples of 5.

near doubles A way to add two nearly identical numbers by using known doubles facts.

net A flat shape that when folded up makes a 3D shape.

number line A line on which numbers can be placed to show their order in our number system or to help with calculations.

number sentence A way to record calculations using numbers and mathematical symbols.

Example: 23 + 7 = 30

numeral A figure or symbol used to represent a number.

Examples: 1 - one 2 - two 3 - three

numerator The top number in a fraction, which shows how many pieces you are dealing with.

polygons

pattern A repeating design or sequence of numbers.

151

not polygons

polyhedron (plural polyhedra) A 3D shape with flat faces.

polyhedra

not polyhedra

power of The number of times a particular number is multiplied by itself.

Example: 4^3 is 4 to the power of 3 or $4 \times 4 \times 4$.

prime number A number that has just two factors – 1 and itself. The first four prime numbers are 2, 3, 5 and 7.

prism A 3D shape with parallel bases of the same shape and rectangular side faces.

triangular prism

rectangular prism

hexagonal prism

probability The chance or likelihood of a particular event or outcome occurring.

Example: There is a 1 in 8 chance this spinner will land on red.

protractor An instrument used to measure the size of angles in degrees.

pyramid A 3D shape with a 2D shape as a base and triangular faces meeting at a point.

square pyramid

hexagonal pyramid

quadrant A quarter of a circle or one of the four quarters on a Cartesian plane.

quadrilateral Any 2D shape with four sides.

radius The distance from the centre of a circle to its circumference or edge.

range The difference between the highest and lowest in a set of numbers.

Example: 5, 3, 6, 2, 4 -the range is 6 - 2 = 4

reflect To turn a shape over horizontally or vertically. Also known as *flipping*.

vertical reflection

reflex angle An angle that is between 180 and 360 degrees in size.

remainder An amount left over after dividing one number by another.

Example: $11 \div 5 = 2 r1$

rhombus A 2D shape with four sides, all of the same length and opposite sides parallel.

right angle An angle of exactly 90 degrees.

right-angled triangle A triangle where one angle is exactly 90 degrees.

rotate Turn around a point.

rotational symmetry A shape has rotational symmetry if it fits into its own outline at least once while being turned around a fixed centre point.

90°

round/rounding To change a number to another number that is close to it to make it easier to work with.

229 can be rounded up to the nearest 10 OR 1230

rounded down to the nearest 100

scale A way to represent large areas on maps by using ratios of smaller to larger measurements.

Example: 1 cm = 5 m

sector A section of a circle bounded by two radius lines and an arc.

semi-circle Half a circle, bounded by an arc and a diameter line.

skip counting Counting forwards or backwards by the same number each time.

Examples:

Skip counting by fives: 5, 10, 15, 20, 25, 30 Skip counting by twos: 1, 3, 5, 7, 9, 11, 13

slide To move a shape to a new position without flipping or turning it. Also known as *translate*.

sphere A 3D shape that is perfectly round.

split strategy A way to solve number problems that involves splitting numbers up using place value to make them easier to work with.

Example: 21 + 14 =

square centimetre or cm²

A unit for measuring the area of smaller objects. It is exactly 1 cm long and 1 cm wide.

square metre or m² A unit for measuring the area of larger spaces. It is exactly 1 m long and 1 m wide.

1 m

square number The result of a number being multiplied by itself. The product can be represented as a square array.

Example: 3×3 or $3^2 = 9$

straight angle An angle that is exactly 180 degrees in size.

strategy A way to solve a problem. In mathematics, you can often use more than one strategy to get the right answer.

$$32 + 2 + 20 + 7 = 30 + 20 + 2 + 7 = 59$$

subtraction The taking away of one number from another number. Also known as *subtracting, take away, difference between* and *minus.* See also *vertical subtraction.*

Example: 5 take away 2 is 3 $+ + + + \times \times$

survey A way of collecting data or information by asking questions.

Strongly agree	
Agree	~
Disagree	
Strongly disagree	

symmetry A shape or pattern has symmetry when one side is a mirror image of the other.

table A way to organise information that uses columns and rows.

Flavour	Number of people
Chocolate	12
Vanilla	7
Strawberry	8

tally marks A way of keeping count that uses single lines with every fifth line

crossed to make a group.

term A number in a series or pattern.

Example: The sixth term in this pattern is 18.

3 6 9	12	15	18	21	24	
-------	----	----	----	----	----	--

tessellation A pattern formed by shapes that fit together without any gaps.

thermometer An instrument for measuring temperature.

three-dimensional or 3D

A shape that has three dimensions – length, width and depth. 3D shapes are not flat.

time line A visual representation of a period of time with significant events marked in.

translate To move a shape to a new position without flipping or turning it. Also known as *slide*.

trapezium A 2D shape with four sides and only one set of parallel lines.

triangular number A number that can be organised into a triangular shape. The first four are:

two-dimensional or 2D

A flat shape that has two dimensions – length and width.

turn Rotate around a point.

unequal Not having the same size or value. Example: Unequal size Unequal numbers

value How much something is worth.

Example:

This coin is worth 5c. This coin is worth \$1.

vertex (plural vertices) The point where two edges of a shape or object meet. Also known as a *corner*.

vertical At a right angle to the horizon or straight up and down.

vertical addition A way of recording addition so that the place-value columns are lined up vertically to make calculation easier.

vertical subtraction A way of recording subtraction so that the place-value columns are lined up vertically to make calculation easier.

volume

How much space an object takes up. Example: This object has a volume of 4 cubes.

whole All of an item or group.

Example: A whole shape A whole group

width The shortest dimension of a shape or object. Also known as *breadth*.

x-axis The horizontal reference line showing coordinates or values on a graph or map.

y-axis The vertical reference line showing coordinates or values on a graph or map.

ANSWERS

UNIT 1: Topic 1

Guided practice

1	М	Hth	Tth	Th		Т	0	Number
	5	0	0	0	0	0	0	5 000 000
		3	0	0	0	0	0	300 000
			6	0	0	0	0	60 000
				7	0	0	0	7000
					9	0	0	900
						1	0	10
							8	8

2 a 51 604

- **b** 200.026
- **c** 12 010

е

Independent practice

- **1** a 60 000 **b** 300 000
 - 6000 **d** 1 000 000 С
 - 80 000 000 **f** 50 000 000 е
- 2 a sixty thousand
 - **b** three hundred thousand
 - c six thousand d one million
 - eighty million **f** fifty million
 - **b** 10 362 059
- **3 a** 80 487 000 **d** 1 400 593 001 c 114 760 209
- 4 a As Student Book
 - 200 000 + 10 000 + 4000 + 800 + 60 + 7 h 2 000 000 + 500 000 + 60 000 + С
 - 7000 + 300 + 20 + 1 5 000 000 + 600 000 + 70 000 + 3000 d
 - +200+750 000 000 + 7 000 000 + 300 000 +
 - e $10\,000 + 9000 + 200 + 40$
 - 400 000 000 + 7 000 000 + 500 000 + f 8000 + 4
- **5** a 9754321 **b** 5 123 479
 - **c** 9543217 **d** 2 314 579
- 6 a 6 142 793: six million, one hundred and forty-two thousand, seven hundred and ninety-three
 - **b** 280 526 306: two hundred and eighty million, five hundred and twenty-six thousand, three hundred and six

Extended practice

- **b** + 40 000 **1** a + 100 **c** - 20 000 **d** + 1
- **2 a** \$340,000 **b** \$705 000 **d** \$1 250 000 **c** \$825,000
- 3 Answers may vary. Look for students who justify their answers appropriately. Possible answers:
 - The digit 5. It means 500 000. \$500 000 а is a lot of money!
 - b The digit 2. It means 2 whole ones. I wouldn't want to write out my times tables any more than that!
 - The digit 1. It means 10. I really like them С but too many might make me ill!

UNIT 1: Topic 2

Guided practice

- **1** $3 \times 3 = 3^2$, $3^2 = 9$, $4 \times 4 = 4^2$, $4^2 = 16$,
- $5 \times 5 = 5^2$, $5^2 = 25$, $6 \times 6 = 6^2$, $6^2 = 36$
- **2** 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10

Independent practice

- **1** (Shading may vary.) $7 \times 7 = 7^2$, $8 \times 8 = 8^2$, $9 \times 9 = 9^2$, $10 \times 10 = 10^2$, $7^2 = 49$, $8^2 = 64$, $9^2 = 81, 10^2 = 100$
- 2 a 121
 - Teacher to check, e.g. The digits b alternate between odd and even. **c** 10 000
- 3 Teacher to check artwork.
- 15: 1 + 2 + 3 + 4 + 5 = 15,21: 1 + 2 + 3 + 4 + 5 + 6 = 21,
- 28: 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28,
- 36: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36,
- 45: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45, 55: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55
- **b** 36
- **4** a 66 Teacher to check, e.g. The numbers С
 - alternate between two odd numbers, then two even numbers

Extended practice

-		
Square number	Multiplication fact	Addition fact
1 ² = 1	1 × 1 = 1	1
2 ² = 4	$2 \times 2 = 4$	1 + 3 = 4
3 ² =9	3 × 3 = 9	1+3+5=9
4 ² = 16	4 × 4 = 16	1 + 3 + 5 + 7 = 16
5 ² = 25	5 × 5 = 25	1+3+5+7+9=25
6 ² = 36	6×6=36	1 + 3 + 5 + 7 + 9 + 11 = 36
7 ² = 49	7 × 7 = 49	1 + 3 + 5 + 7 + 9 + 11 + 13 = 49
8 ² = 64	8×8=64	1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64
9 ² = 81	9×9=81	1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 81
10 ² = 100	10 × 10 = 100	1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 100

- 2 a Teacher to check, e.g. To get to the next square number, you add the next odd number.
 - $11^2 = 121, 11 \times 11 = 121, 1 + 3 + 5 + 7 + 9$ + 11 + 13 + 15 + 17 + 19 + 21 = 121

b 1, 5, 12, 22, 35

23 С **3 a** 15

- 2 а
 - С

c Teacher to check, e.g. To get to the second pentagonal number you add 4 to the first one (1 + 4 = 5). For the next one you add 3 more than that (5 + 7 = 12). Each time, you add 3 more than last time.

UNIT 1: Topic 3

Guided practice

	Factors	How	Prime or	composite?
Number	(numbers it can be divided by)	many factors?	Prime	Composite
1	1	1	n	either
2	1 and 2	2	V	
3	1&3	2	 ✓ 	
4	1, 2 & 4	3		 ✓
5	1&5	2	~	
6	1, 6, 2, 3	4		1
7	1&7	2	v .	
8	1, 8, 2, 4	4		 ✓
9	1, 9, 3	3		
10	1, 10, 2, 5	4		 ✓
11	1 & 11	2	v .	
12	1, 12, 2, 6, 3, 4	6		1
13	1 & 13	2	×	
14	1, 14, 2, 7	4		 ✓
15	1, 15, 3, 5	4		
16	1, 16, 2, 8, 4	5		 ✓
17	1 & 17	2	×	
18	1, 18, 2, 9, 3, 6	6		~
19	1 & 19	2	1	
20	1, 20, 2, 10, 4, 5	6		-

2 a 2, 3, 5, 7, 11, 13, 17, 19 **b** Teacher to check, e.g. 2 is the only even prime number.

> 25 26 27 28 29 30

> 45 46 47 48 49 50

> 55 56 57 58 59 60

85 86 87

Independent practice

23 24

43 44

53 54

82 (83) 84

74 75 76 77 78

1 1 2 3 4 5 6 7 8 9 10

11) 12 13 14 15 16 17 18 19 20

21 22

31

41 42

51 52

61 62 63 64 65 66 67 68 69 70

71 72 73

81

32 33 34 35 36

91	92	93	94	95	96	97)	98	99	100	
	97				b Fa	alse				
	False (49 even composite numbers,									
	25 odd composite numbers).									

38

39 40

79

88 89

80

90

37

а

UNIT 1: Topic 4

Guided practice

1	Problem	Using rou	nding it bea	comes	Now I need to)	Answer
а	317 + 199	317 + 200 :	317 + 200 = 517		take away 1		516
b	275 - 101	275-100	= 175		take away ano	ther 1	174
C	527 + 302	527 +	300 =	827	add another	2	829
d	377 – 98	377 —	100 =	277	add back 2		279
е	249 + 249	250 + 250	= 500		take away 2		498
f	938-206	938-200	938 - 200 = 738		take away ano	ther 6	732
g	1464 + 998	1464 + 100	1464 + 1000 = 2464		take away 2	take away 2	
2	Problem	Expand the	ie numbers		Join the partr	iers	Answer
а	370 + 520	300 + 70 +	500 + 20		300 + 500 + 70	+ 20	890
b	2200 + 3600	2000 + 20	0 + 3000 + 6	00	2000 + 3000 +	200 + 600	5800
С	342 + 236	300 + 40 +	2+200+3	0+6	300 + 200 + 40) + 30 + 2 + 6	578
d	471 + 228	400 + 70 +	1 + 200 + 2	0 + 8	400 + 200 + 70	+ 20 + 1 + 8	699
е	743 + 426	700 + 40 +	3+400+2	0+6	700 + 400 + 40) + 20 + 3 + 6	1169
f	865 + 734	800 + 60 +	5 + 700 + 3	0 + 4	800 + 700 + 60	+ 30 + 5 + 4	1599
g	4270 + 3220	4000 . 00	0 70 000	0 + 200 + 20	4000 . 0000	200 + 200 + 70 + 20	7490

Independent practice

1	а	379	b	599	C	1298
	d	2284	е	3909	f	10 990
2	а	446	b	765	С	874
	d	545	е	768	f	1206

3 Examples of strategies that might be used:
 a 898 (I said 650 + 250 = 900 then took away 2.)

- **b** 1054 (I took 200 from 1253 = 1053. Then I added 1 back.)
- **c** 3500 (I doubled 1500 then doubled 250.)
- **d** 14 168 (I took 400 away and then took another 10.)
- 4 Examples of the way the numbers might be rounded:

	Number fact	Rounded number	l rounded this number to the nearest
а	Australia has 812 972 kilometres of roads.	813 000 km	thousand
b The Electricity Company of China employs 1 502 000 people.		1 500 000	hundred thousand
С	The Mexican soccer player, Blanco, earned \$2 943 702 in 2009.	\$3 000 000	million
d The fastest speed recorded at the Indianapolis 500 car race was 299.3 km/h.		300 km/h	hundred
е	The fastest 100-metre sprint time for a woman is 10.49 seconds.	10.5	tenth
f	The US department store Walmart employs 2 100 000 people.	2 000 000	million
g	Each Australian eats an average of 17 L 600 mL of ice-cream a year.	18 L	litre
h	The longest rail tunnel is in Switzerland. It is 57.1 km long.	57 km	kilometre
i	The amount of money the movie <i>Avatar</i> made was \$2 783 919 000.	\$3 billion	billion
j	Foreign tourists spend \$29 127 000 000 a year in Australia.	\$29 billion or \$30 billion	billion or ten billion
5	Basic: \$2	2 490	
	Deluxe: \$3	1 490	
	Premium: \$3	8 959	

1 Examples of how the numbers might be rounded:

8						
	Problem	Round the numbers	Estimate the answer	Which is the likely answer?		
e.g.	109 897 + 50 157	110 000 + 50 000	160 000	261 054 or 161 054		
а	5189 - 2995	5000 - 3000	2000	2194 or 3194		
b	2958 + 6058	3000 + 6000	9000	9016 or 8016		
С	8215 - 3108	8000 - 3000	5000	5907 or <mark>5107</mark>		
d	15 963 + 14 387	16 000 + 14 000	30 000	29350 or 30350		
е	8954 - 3928	9000 - 4000	5000	5026 or 4026		
f	4568 + 4489	4500 + 4500	9000	8057 or <mark>9057</mark>		
g	13 149 – 7908	13 000 - 8000	5000	6241 or 5241		
h	124 963 + 98 358	125 000 + 100 000	225 000	223 321 or 213 321		

2 Examples of ways of rounding:

	Problem	Round the numbers	Estimate the answer	Calculator answer
e.g.	6190 + 1880	6000 + 2000	8000	8070
а	4155 + 2896	4000 + 3000	7000	7051
b	9124 - 8123	9000 - 8000	1000	1001
С	24 065 + 5103	24 000 + 5000	29 000	29 168
d	19 753 – 10 338	20 000 - 10 000	10 000	9415
е	101 582 + 49 268	101 000 + 49 000	150 000	150 850
f	298 047 - 198 214	300 000 - 200 000	100 000	99 833
g	1 089 274 + 1 099 583	1 000 000 + 1 000 000	2 000 000	2 188 857
h	1 499 836 + 1 489 967	1 500 000 + 1 500 000	3 000 000	2 989 803

Unit 1: Topic 5

Guided practice

1	а	1234	b	2345	с	3456			
	d	4567	е	5789	f	5678			
T-	Independent prostice								

Independent practice

1	а	1111	b	2222	С	3333
	d	4444	е	5555	f	6666
	g	7777	h	8888	i	9999
	j	10 000	k	11 111		

2 Look for the strategies used to solve the problem. One simple solution is to subtract 123 from 99 999 four times, making the addition 99 507 + 123 + 123 + 123 + 123.

3 a

Country	Paved	Unpaved roads	Total
USA	4 165 110	2 265 256	6 430 366
India	1 603 705	1 779 639	3 383 344
China	1 515 797	354 864	1 870 661
France	951 220	0	951 220
Japan	925 000	258 000	1 183 000
Spain	659 629	6 663	666 292
Canada	415 600	626 700	1 042 300
Australia	336 962	473 679	810 641
Brazil	96 353	1 655 515	1 751 868

- **b** India, Canada and Brazil
- c USA and China
- d China and Canada (981564 km)

Extended practice

- **1** 947 344 **2** 562 996
- **3** The correct answer is 453 487. Teacher to check students' methods of confirming the correct answer.
- ${\color{red} \textbf{4}} \quad 335\,358\,000\,000\,km^2$

UNIT 1: Topic 6

Guided practice

1	а	229	b	326	c	2208	d	2119
2	а	589		b	199	С	2149	
	d	1985		е	9988	f	8899	

Independent practice

1	а	54 321	b	65 432	С	76 543
	d	87 654	е	98 765	f	56 789
	g	45 678	h	34 567	i	23 456
	j	12 345				
2	98	375 432 - 2	2 345	789 = 7 52	9 643	3

2 9 875 432 - 2 345 789 = 7 529 643 **3 a** 3268 **b** 12 619 **c** 22

8	а	3268	b	12 619	С	22 656
	d	34 579	е	375 777	f	676 068
	g	749	h	3649	i	320 054
	j	65 622				

Extended practice

- **1 a** 193 635 **b** 126 296 **c** 191 790
- **2 a** Teacher to check; using any three digits will result in the answer 1089.
 - **b** The answer is still 1089.

Unit 1: Topic 7

Guided practice

1	L	×	10	100	1000	10 000
Γ	а	29	290	2900	29 000	290 000
ľ	b	124	1240	12 400	124 000	1 240 000
[С	638	6380	63 800	638 000	6 380 000
	d	\$1.25	\$12.50	\$125	\$1250	\$12 500
	е	750	7500	75 000	750 000	7 500 000

2	÷	10	Write the multiplication		
_			fact partner		
а	370	37	37 × 10 = 370		
b	4700	470	$470 \times 10 = 4700$		
С	 c 2000 200 d \$22.50 \$2.25 e 54 5.4 		200 × 10 = 2000		
d			\$2.25 × 10 = \$22.50		
е			$5.4 \times 10 = 54$		
	01	0.1	0.17410 - 01		
-	01	0.1	0.17410-01		
3	÷	100	Write the multiplication fact partner		
3 a			Write the multiplication		
	÷	100	Write the multiplication fact partner		
а	÷ 700	100 7	Write the multiplication fact partner 7 × 100 = 700		
b	÷ 700 \$495	100 7 \$4.95	Write the multiplication fact partner 7 × 100 = 700 \$4.95 × 100 = \$495		

Independent practice

1	×	10	20 [double]	40 [double again]	80 [double again]
а	12	120	240	480	960
b	15	150	300	600	1200
С	22	220	440	880	1760
d	25	250	500	1000	2000
е	50	500	1000	2000	4000
2	-	718		40	80

2		÷	· 10 [[40 [halve again]	80 [halve again]	
	а	400	40	20	10	5	
	b	2000	200	100	50	25	
	С	480 48	48	24	12	6 125	
	d	10 000	1000	500	250		
е		8800	880	440	220	110	

3		×5	First multiply by 10	Then halve it	Multiplication fact		
	а	24	240	120	$24 \times 5 = 120$ $68 \times 5 = 340$ $120 \times 5 = 600$		
	b	68	680	340			
	С	120	1200	600			
	d	500	5000	2500	$500 \times 5 = 2500$		
	е	1240	12 400	6200	$1240 \times 5 = 6200$		

4	÷5	First divide by 10	Then double it	Division fact		
а	420	42	84	420 ÷ 5 = 84		
b	350	35	70	350 ÷ 5 = 70		
С	520	520 52 900 90		520 ÷ 5 = 104		
d	900			900 ÷ 5 = 180		
е	1200	120	240	1200 ÷ 5 = 240		

5		× 30	First × 10	Then × 3	Multiplication fact		
	а	15	150	450	$15 \times 30 = 450$		
	b	22	220	660	22×30=660		
	С	33	330	990	33 × 30 = 990		
	d	150	1500	4500	$150 \times 30 = 4500$		
	е	230	2300	6900	230×30=6900		

6		× 30		First × 3	;	Then × 10	Mult fact	iplication		
1	а	b 22 c 33		45		450	15×3	30 = 450		
	b			66		660	22×3	22×30=660		
	С			99		990	33×3	30 = 990		
	d			450		4500	150 ×	$150 \times 30 = 4500$		
	е	23	30	690		6900	230×	30 = 6900		
	7	a 600		b		880	с	1250		
		d	1700	e	e	840	f	5000		
		g	1200	ŀ	ı	1440	i	570		
	j \$72		\$72	ŀ	C	\$90	- I	416		
		m	208	r	ı	62				
1	8	\$8	7.40							

1		× 15	× 10	Halve it to find × 5	Add the two answers	Multiplication fact		
1	а	12	120	60	180	12 × 15 = 180		
	b	32 320		160	480	32 × 15 = 480		
	С	41	410	205	615	41 × 15 = 615		
ľ	d	86	860	430	1290	86 × 15 = 1290		
	е	422	4220	2110	6330	$422 \times 15 = 6330$		

2		× 13	×10 ×3		Add the two answers	Multiplication fact		
	а	15	150	45	195	15 × 13 = 195		
	b	12	120	36	156	12 × 13 = 156		
	C	23 230		69	299	23 × 13 = 299		
	d	31	310	93	403	31 × 13 = 403		
	е	25	250	75	325	25 × 13 = 325		
е 3 4		d 30	- 68	b e h b	6300 8800 \$0.90 3600	c 4 f \$1.80		

Unit 1: Topic 8

Guided practice

1	а	162	b	325		
2	а	508	b	981	С	630
	d	916	е	8190	f	9415
	g	8512	h	7285	i	9042
Ir	nde	epende	nt p	ractice		
1	а	700	b	540	С	1080
	d	1840	е	2010	f	2040
	g	3040	h	9840	i.	10 980
	j	55 280	k	186 060	Т	208 720
2	\$4	1380				
3	1 9	966 080				
4	а	552	b	805	С	980
5	а	888	b	1053	С	1092
E	xte	ended p	orac	tice		
1	а	725	b	1134	С	741
	d	1419	е	1125	f	2368
	g	3198	h	11 178	i	18 612
2	а	11 725 da	ys	b 83 700 sneezes		

U	Unit 1: Topic 9							
G	Guided practice							
1	а	69	b	442		С	94	
	d	110	e	4321		f	1201	
	g	934	h	4841		i.	4322	
2	j	4322	k	12 34	43	I	54 322	
2	a d	215 2686	b e	582 659		с f	358 348	
Ir	nde	ependent	t p	ract	ice			
1	а	4 r2 or $4\frac{2}{3}$	-		9 r2 o	r 9∄		
	с	9 r3 or $9\frac{3}{4}$			8 r1 o		,	
	е	8 r5 or 8 ⁵			8 r5 o			
	g	9 r3 or 9 ³ / ₉ or	<u>q1</u>		0100	, 0,	,	
	9 h	9 r4 or $9\frac{4}{6}$ or	~					
2	a	116 r3 or 116	~	h	90 r2	or	202	
2	a C	32 r5 or 32 ⁵ / ₆		d	148 r2		· -	
	e	858 r1 or 85		f	187 r1			
		694 r1 or 69						
3	g		0		331 r2		3317	
3	а	62 and one l justification:					able to	
		split a marble						
	b	7 ¹ / ₂ (Possible			on: the	әу м	vould	
		probably sha them.)	are	the ex	tra do	nut	between	
4	а	\$26.50	b	\$18.	50	с	\$11.50	
	d	\$18.25	е	\$16.	50	f	\$21.50	
5	а	148.75	b	125.6	6	с	63.25	
	d	136.8	е	336.	75	f	1231.5	
	g	2865.5	h	2319	9.6	i.	6523.25	
6	а	36		b	\$36.2	5		
Ε	xte	ended pro	αc	tice				
1	а	291.33	b	124.2		C	83.14	
	d	42.33	е	80.4		f	1828.33	
	g	348.6	h	1226		i.	11 494.75	
~	j	14 321.33	k	5095		I,	10 807.22	
2		2 b 2 c 4		d 3		f	- J -	
3		erupts 20 time rategy that the						
		estimation o						
		650 = 7300.						
II	ni	t l. Topi	a	10				
-0		t l: Topi	C	10				
C	mi	ded prac	tic	9				
1		aca piac						

1 0 1 2 3 4 5 -3 -2 -1 -5 -4 4 2 5 square 4 -3 black dot 2 -1 0 triangle -1:--2 blue dot -3 --4 --5 - star **3** -5, -3, -1, 0, 2, 4

4	а	true	b	false		С	true	•
	d	false	е	true		f	fals	е
	g	false	h	true				
In	d	epender	nt p	ract	ice			
1		-2 + 4 = 2			2-3=			
	-	4 - 7 = -3			-6 + 5			
	-	-3 - 5 = -3	-	-	-8 + 8	-	-	
	g	-8 + 10 = 3	2	h	7 – 11	= -	-4	
	i i	-7 + 15 = 8	3	j	6 – 13	= -	-7	
2	а	-1	b	-1		С	-4	
	d	-5	е	-10		f	-60	1
3	а	-60, -50, -	-40	-30	-20. –1	0.0). 10.	20.
		30, 40, 50	,	/		-, -	.,,	/
	b	-25, -20, -	-15. –	10. –5	5. 0. 5.	10	. 15. 3	20.
		25, 30	1	,			, .	,
	С	-28, -24, -	-20	-16. –	2. –8.	-4	0.4	. 8.
	-	12, 16	/		_/ _/			, -,
	d	-35, -28, -	-21	14. –7	7. 0. 7.	14.	21.2	8.
		35, 42	,	, .	1 -1 -1	,	, _	,
	е	-63, -54, -	-45, -	-36	-27. –1	8. –	9. 0.	9.
		18, 27, 36			,	,		,
4	al	& b Tuesda	av	2°	0			
		Sunda	'	1°(
		Wedn						
		Saturd		, –1°				
		Monda	'	-2				
		Friday	'	-3	°Ċ			
		Thurso		-4	°С			
	с	Thursday		d	6°C			
5		,						
	5	-4 -3 -2	-1	0	1 2		3 4	1 5
1	M	-4 -3 -2 A	[_	[–]	h r	1 [
			النبا ا		Lood (Loo	1		
E	cte	ended p	rac	tice				
		Holeinki M			uobaa	Γ.4	0000	

1 a Helsinki, Montreal, Quebec, Moscow

- **b** Berlin
- **c** −5°C
- **d** Montreal and Sydney (–6° and 27°), Helsinki and Acapulco (–3° and 30°), Quebec and Melbourne (–7° and 26°)

2	INTERNATIONAL BIG BANK					
	Date	Paid in \$	Paid out \$	Balance \$		
	3 May	100	1 8	100		
	4 May		120	-20		
	9 May	30		10		
	14 May		50	-40		
	31 May	45		5		

- **3 a** \$-100
 - **b** Teacher to check, e.g. it would be more than \$90 because there would be interest payable on the amount owing.

Unit 1: Topic 11

Guided practice

1	Multiplication	Base number and exponent
а	2×2×2×2×2	2 ⁵
b	$4 \times 4 \times 4$	4 ³
с	8×8×8×8	84
d	$5 \times 5 \times 5 \times 5 \times 5$	55
е	7×7×7×7×7×7	7 ⁶
f	$10 \times 10 \times 10 \times 10$	10 ⁴

2	Base number and exponent	Number of times the base number is used in a multiplication	Multiplication	Value of the number
а	3 ³	three times	3×3×3	27
b	24	four times	2×2×2×2	32
с	5 ³	three times	$5 \times 5 \times 5$	125
d	6 ²	two times	6×6	36
е	9 ²	two times	9×9	81
f	10 ³	three times	10 × 10 × 10	1000

3	Starting number	What number multiplied by itself makes the number?	Square root of the starting number	Number fact
а	4	2 × 2 = 4	4	$\sqrt{4} = 2$
b	36	6 × 6 = 36	6	√36 = 6
с	9	3 × 3 = 9	3	$\sqrt{9} = 3$
d	64	8×8=64	8	√64 = 8

4	Starting number	Which two square numbers is it between?	What are their square roots?	The square number is between
а	10	9 and 16	$\sqrt{9} = 3$ and $\sqrt{16} = 4$	3 and 4
b	42	36 and 49	$\sqrt{36} = 6$ and $\sqrt{49} = 7$	6 and 7
с	20	16 and 25	$\sqrt{16} = 4$ and $\sqrt{25} = 5$	4 and 5
d	52	49 and 64	$\sqrt{49} = 7$ and $\sqrt{64} = 8$	7 and 8

Independent practice

- **1 a** $2^7 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 =$
- **c** $3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729$
- $e \quad 7^4 = 7 \times 7 \times 7 \times 7 = 2401$
- **2 a** 8⁵: 9⁴ = 6561 and 8⁵ = 32 768
- 3 **a** $5^6 = 15625$

4

b $5^5 = 5 \times 5 \times 5 \times 5 \times 5 = 3125$

d $4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024$

- **b** $3^5: 5^3 = 125$ and $3^5 = 243$
- **b** $10^6 = 1\ 000\ 000$

Starting number	The approximate square root is between	Actual square root (to two decimal places)	Number fact
5	2 and 3	2.24	$\sqrt{5} = 2.24$
40	6 and 7	6.32	√40 = 6.32
14	3 and 4	3.74	√14 = 3.74
30	5 and 6	5.48	√30 = 5.48
99	9 and 10	9.95	√99 = 9.95

Extended practice

- **1 a** 5^2 = 25
 - **b** 3^4 = 81
 - **c** 10^4 = 10 000
 - **d** 1^10 = 1
- 2 Teachers may wish to discuss with students an appropriate number of decimal places that are needed.
 - **a** 8⁻¹ = 1 ÷ 8 = 0.125
 - **b** $8^{-2} = 1 \div 8 \div 8 = 0.015625$
 - **c** $4^{-1} = 1 \div 4 = 0.25$
 - **d** $4^{-2} = 1 \div 4 = 0.25 \div 4 = 0.0625$
 - **e** $10^{-2} = 1 \div 10 = 0.1 \div 10 = 0.01$
 - **f** $10^{-3} = 1 \div 10 = 0.1 \div 10 =$ $0.01 \div 10 = 0.001$
- 3 This is a useful discussion point. For square numbers, the method of saying "multiplied by itself" works. However, for higher exponents, such as the power of 4, it is not correct to say, " $3^4 = 3$ times itself 4 times"

because this could be confused with 3×3 $\times 3 \times 3 \times 3$

 3×3 (first time) = 9, $\times 3$ (second time) = 27, \times 3 (third time) = 81, \times 3 (fourth time) = 243. 3^4 = 81. If dealt with correctly, 3^4 is seen as the base number (4) being used in a multiplication 4 times: $3 \times 3 \times 3 \times 3 = 81$. Advanced student should, therefore, see 6³ as the opposite of 6⁻³ in which 1 is divided by 6 three times $(1 \div 6 \div 6 \div 6)$. Therefore, 6³ can be written as 1 multiplied by 6 three times $(1 \times 6 \times 6 \times 6)$.

- **a** $6^3 = 1 \times 6 \times 6 \times 6 = 216$ (compare with $6 \times 6 \times 6 = 216)$
- **b** $4^4 = 1 \times 4 \times 4 \times 4 \times 4 = 256$ (compare with $4 \times 4 \times 4 \times 4 = 256$)
- 4 Some trial and error should lead students to see that the base number always remains the same when the exponent is 1. The method in question 3 is a simple way to see this. For example, $5^1 = 1 \times 5 = 5$ and so on.

Unit 2: Topic 1

Guided practice

- **1** a one-sixth, $\frac{1}{6}$ **b** three-fifths, $\frac{3}{5}$ c seven-tenths, $\frac{7}{10}$ **d** two-thirds, $\frac{2}{3}$ **2** a $\frac{4}{16}$ or $\frac{1}{4}$ b Student shades 4 stars. 3 a $\frac{9}{10}$ **b** Student draws a smiley face at the $\frac{3}{10}$ mark. **C** $\frac{7}{10}$ **d** Student draws a triangle at the $\frac{6}{10}$ mark. Independent practice **1** a $\frac{3}{6}, \frac{4}{8}, \frac{5}{10}, \frac{6}{12}$ **b** Any fraction that is equivalent to $\frac{1}{2}$, e.g. ⁷/₁₄, ⁸/₁₆ etc. 2 The answers below are ones that students can identify from the fraction wall. However, there are other possibilities, such as $\frac{2}{10} = \frac{4}{20}$. **a** $\frac{1}{5}$ **b** $\frac{2}{12}$ **C** $\frac{1}{4}$ **d** $\frac{10}{12}$ $e \frac{8}{10}$ **f** Any or all of $\frac{1}{3}$, $\frac{2}{6}$ and $\frac{4}{12}$ 3 a $\frac{2}{3}$ **b** $\frac{8}{10}$ **C** $\frac{6}{8}$ d 6 $e \frac{8}{12}$ f 3 4 There are several possible correct responses. One possibility is shown. Check that the equivalent fractions are correct and that the shading matches the fractions. **a** $\frac{6}{8} = \frac{3}{4}$ **b** $\frac{8}{10} = \frac{4}{5}$ 5 Teacher to check shading and to decide how accurate students need to be with regard to dividing the shapes. 6 a $\frac{3}{12}$ (or any equivalent to $\frac{1}{4}$) **b** $\frac{3}{4}$ (or any equivalent to $\frac{3}{4}$) **c** Most likely answers are $\frac{1}{6}$ and $\frac{2}{12}$, but students could choose other equivalent fractions. **d** Student draws a star at the $\frac{8}{12}$ mark. **Extended** practice **1** a ÷ 4 **b** ÷ 3 **c** ÷ 2 **d** ÷ 3 **e** ÷ 5 **f** ÷ 4 $\mathbf{g} \times 2$ $h \times 2$ $i \times 4$ $\times 2$ $\mathbf{k} \times 6$ **I** × 4 i.
- 2 Teacher to check method. Below are probable solutions, but students may provide different answers, such as $\frac{4}{10}$ for 2d:

	a $\frac{2}{3}$	b	$\frac{3}{4}$		$\frac{1}{2}$
	d $\frac{2}{5}$	е	<u>1</u> 7	f	$\frac{4}{5}$
	g $\frac{1}{4}$				
3	a $\frac{1}{2}$	b	4 5	С	$\frac{1}{3}$
	d $\frac{1}{3}$	е	1	f	$\frac{4}{5}$
			$\frac{1}{6}$		

Unit 2: Topic 2

Guided practice

Guided practice							
1	а	$\frac{4}{6}$ (or $\frac{2}{3}$)		b	$\frac{8}{7} = 1\frac{1}{7}$		
	C	$\frac{6}{4} = \frac{2}{8}\frac{2}{4}$ (or $1\frac{1}{2}$)		d	$\frac{8}{10}$ (or $\frac{4}{5}$)		
2	а	$\frac{3}{8} + = \frac{5}{8}$		b	$\frac{3}{4} - \frac{2}{4} = \frac{1}{4}$		
Ir	nde	ependent	\mathbf{p}	rac	tice		
1	а					с	45
	d	5 85 7		⁸ / ₁₀ (0 ¹⁰ / ₁₂ (0		f	4 57 9 7 8
	g	0		1 (or		i	<u>7</u> 8
2	a	$\frac{4}{8}$ (or $\frac{1}{2}$)	b	6 9 2 7	23	C	$\frac{\frac{6}{12}}{\frac{6}{10}}$ or $\frac{1}{\frac{2}{5}}$
	d	$\frac{1}{4}$	е	27	1		
	g	4 9	h	$\frac{3}{6}$ or	2		0 1
3	a	$\frac{4}{8}$ or $\frac{1}{2}$	b e	10 9		c f	³ / ₆ or ¹ / ₂
4	a	8	e b	10 3			9 4 or 1
4	a d	E .	e	$\frac{3}{10}$ $\frac{1}{4}$		f	$\frac{\frac{4}{12}}{\frac{6}{12}}$ or $\frac{1}{\frac{3}{2}}$
5	St	udent shows t			$\frac{1}{3} = \frac{4}{9} + \frac{3}{9} =$		12 2
6		$\frac{12}{8} = 1\frac{4}{8}$ or $1\frac{1}{2}$					
		$\frac{16}{12} = 1\frac{4}{12}$ or 1					
		$\frac{16}{10} = 1\frac{6}{10}$ or 1			$\frac{9}{6} = 1\frac{3}{6}$ or		
		$\frac{8}{8} = 1$			$\frac{4}{3} = 1\frac{1}{3}$		
7	а	$1\frac{4}{8}$ or $1\frac{1}{2}$		b	1 <u>1</u>		
	c	1 ² / ₁₀ or 1 ¹ / ₅		d	$2\frac{2}{4}$ or $2\frac{1}{2}$		
	е	$2\frac{6}{8}$ or $2\frac{3}{4}$		f	3 ⁹ /10		
	g	1 <u>2</u>		h	$2\frac{6}{8}$ or $2\frac{3}{4}$		
8	а	⁹ / ₈ or 1 ¹ / ₈		b	$\frac{11}{10}$ or $1\frac{1}{10}$		
	С	$2\frac{3}{6}$ or $2\frac{1}{2}$		d	3 ³ / ₈		
	е	$2\frac{5}{10}$ or $2\frac{1}{2}$		f	4 <u>4</u> 9		
9	а	7 <u>8</u>	b	$1\frac{8}{10}$ c	or 1 <u>4</u>	С	$\frac{11}{12}$
	d	<u>5</u> 6	е	$1\frac{1}{4}$		f	<u>5</u> 12
E	Extended practice						

- 1 Students should convert all fractions to eighteenths: $\frac{5}{18} + \frac{4}{18} + \frac{3}{18} + \frac{6}{18} = \frac{18}{18} = 1$
- **b** $2\frac{5}{12}$ **2** a $1\frac{1}{2}$ c $1\frac{5}{8}$ f $1\frac{1}{2}$ **d** $1\frac{3}{10}$ **e** $5\frac{3}{4}$ **g** $3\frac{7}{12}$
- 3 Answers will vary. For example, $\frac{1}{4} + \frac{1}{3} + \frac{5}{12} + \frac{1}{6} = \frac{14}{12} = 1\frac{1}{6}$

Unit 2: Topic 3

Guided practice

- **1** a $\frac{3}{100}$ or 0.03 **b** $\frac{69}{100}$ or 0.69 $\frac{20}{100} \left(\frac{2}{10}\right)$ or 0.20 (0.2) (Discuss the С connection with students.) **2** a 2 **b** 8 **c** 125 **d** 200 **e** 75
- **f** 9 **g** 99 **h** 999 **i** 1 **j** 10 **k** 100 250

Independent practice

1	St	udent shades	s:			
	а	5 squares		b 35 s		
	С	33 squares		d 90 s	quare	∋s
2	а	True	b	False	С	True
	d	False	е	True	f	True
	g	False	h	True	i	True
	j	False	k	False	1	True
3	St	udent shades	s:			
	а	15 squares	red	b 5 sq	uares	s yellow

- c 45 squares blue d 10 squares green e Unshaded amount is $\frac{1}{4}$ or 0.25.
- **4** 0.045, 0.145, 0.415, 0.45, 0.451

5	а	3	0.75
	a		
	b	1 10	0.1
	С	<u>3</u> 10	0.30
	d	<u>9</u> 100	0.09
	е	405 1000	0.405
	f	250 1000	0.25(0)
	g	<u>99</u> 1000	0.099
	h	<u>1</u> 100	0.01

6	Improper Mixed number fraction		Decimal
a	$\frac{7}{4}$	1 <u>3</u>	1.75
b	13 10	1 <u>3</u>	1.3
с	<u>125</u> 100	1 <u>25</u> 1 <u>00</u>	1.25
d	450 100	4 ⁵⁰ / ₁₀₀ (or equivalent)	4.5
е	<u>275</u> 100	275 (or equivalent)	2.75
f	1250 1000	1 250 (or equivalent)	1.25

Extended practice

		-				
1	а	0.1	b	0.25	С	0.7
	d	1 100	е	$\frac{3}{4}$	f	1 1000
2	а	0.2	b	0.125	С	0.75
	d	0.375	е	0.8	f	0.875
3	0.3	33 recurring		4 0.16		

5 Teacher to check rounding. To 3 decimal places, 0.1428 becomes 0.143

Unit 2: Topic 4

Guided practice

1	а	4166	b	41.66		
2	а	45.2	b	4.37	С	29.12
	d	52.3	е	1.75	f	26.97
Ir	nde	epende	ent p	ractice		

		-					
1	а	6.02	b	9.36	;	С	63.936
	d	50.1	е	1.55		f	7.593
	g	2.21	h	9.9		i	17.415
2	а	\$171.14		b	\$80.05	5	
3	а	54.91 m		b	2.287	<g< th=""><th></th></g<>	
	d	0.050	da				

- 4 d 8.253 seconds
- **5** 33.92 m
- 6 10 kg
- **7** 8.61 m

2

Extended practice

1 Answers will vary, e.g. 0.2 + 4.62 + 4.36 = 9.18 or 0.9 + 4.92 + 3.36 = 9.18

Organ	Mass
skin	10.886 kg
liver	1.56 kg
brain	1.408 kg
lungs	1.09 kg
heart	0.315 kg
kidneys	0.29 kg
spleen	0.17 kg
pancreas	0.098 kg

- **b** 1.405 kg **c** 9.478 kg **d** heart
- e Teacher to check but the right must be 0.07 kg heavier and the two masses must be close (e.g. right: 0.58 kg, left: 0.51 kg)
- **f** 0.992 kg **g** 0.943 kg

Unit 2: Topic 5

Guided practice

9	-	acc	• P	activ					
1	а	396			b	39.6			
2	а	854	0		b	85.4(0	D)		
3	а	298	2		b	298.2			
4	а	18 4	38		b	184.3	8		
5	а	172			b	17.2			
6	а	171			b	17.1			
7	а	82			b	8.2			
8	а	204			b	20.4			
Ir	nd	epe	nd	ent p	rac	tice			
1	а	44.1		b	85.6	6	с	6	3(.0)
	d	91.5	5	е	8.64	1	f	1	0.36
	-	8.1		h	7.71		i	5	1.8
	j	864	.2	k	7.72	5	L	9	5.13
2		5.3		b					2.4
		19.5		е					.37
	· ·	3.19			12.1				4.38
	j	12.4	7	k	2.57	7	I	0	.527
3	а	174.	4	b	327.	6	C	3	6.95
	d	128	.01	е		.24			9.824
	g	722	(.0)	h	558	.45	i	4	0.175
4	а	\$2	b	\$4	С	\$7.95		d	\$19.90
5	а	\$1	b	\$1.60	С	\$3		d	\$1.25
E	Extended practice								

Extended practice

Look for the strategies the student uses to solve these problems. Discuss whether mental strategies would be more appropriate in some cases

- **1** \$84.55
- 2 60 cm (0.6 m)
- **3** \$62.50

4 a Soft drink (1.25 L) \$6.75 Juice (300 mL) \$5.04 (\$5.05) Potato crisps (50 g) \$16.20 Chocolate (150 g) \$9.86 (\$9.85) Melon \$3.84 (\$3.85) Pies (4 in a pack) (Two packs of four pies are needed for 6 students.) \$16.08 (\$16.10)

- **b** \$57.80 if items are rounded or \$57.77 without rounding. This would then be rounded to \$57.75.
- c 64 cents (round to 65 cents)
- **d** \$57.80 ÷ 6 = \$9.65 (rounded) $57.77 \div 6 = 9.65$ (rounded)
- **e** \$57.80 × 4 = \$231.20 \$57.77 × 4 = \$231.08 (= \$231.10 rounded)

Unit 2: Topic 6

. 1.1

Gı	ui	ded pı	actio	e			
1	а	450		k	4 5		
2	а	740		k	7 4		
3	а	3750		k	375		
4	а	6290		k	6 29		
5	а	35		k	3 .5		
6	а	74		k	7 .4		
7	а	87		k	8.7		
8	а	93		k	9.3		
9	а	326		k	23.5		
	С	78.92		c	652		
10	а	2.35		k	4 .275		
	С	0.35		c	0.02		
In	de	epende	ent p	rad	ctice		
	а	35		k			
	a	67		k			
	a	53.8		k			
	a	40.9		k			
	a	0.45			0.045		
	a	0.79			0 .079		
	a	5.45			0.545		
	a	6.27		Ŀ			
	a	245			1737		
10		34.161	b	0.0			
11		1300	b	26		с	3570
	a	1000		20	00	· •	00/0
	d	1270	е	15	470		72 950
	d g	1270 96 300	e h		470 400	f	72 950
	g				400		
12	g	96 300	h	25	400 29	f	
12	g a	96 300 0.432	h b	25 0.5 1.4	400 29	f c	0.841
12	g a d	96 300 0.432 0.697	h b e h	25 0.5 1.4	400 29 85 .999	f c	0.841 3.028
12 13	g a d g	96 300 0.432 0.697 10.436	h b e h ×10	25 0.5 1.4	400 529 85 999 ×100	f c	0.841 3.028 × 1000
12 13 a	g a d g	96 300 0.432 0.697 10.436	h b e h × 10 17	25 0.5 1.4	400 29 85 999 ×100 170	f c	0.841 3.028 × 1000 1700
12 13 a b	g a d g 1 2	96 300 0.432 0.697 10.436 .7 2.95	h b e h x 10 17 229.5	25 0.5 1.4	400 29 85 999 ×100 170 2295	f c	0.841 3.028 ×1000 1700 22 950
12 13 a	g a d g 1 2 3	96 300 0.432 0.697 10.436 .7 2.95 .02	h b e h × 10 17	25 0.5 1.4	400 29 85 999 ×100 170 2295 302	f c	0.841 3.028 × 1000 1700
12 13 a b c	g a d g 1 2 3 4	96 300 0.432 0.697 10.436 .7 2.95	h b e h 2 229.5 30.2	25 0.5 1.4	400 29 85 999 ×100 170 2295	f c	0.841 3.028 × 1000 1700 22 950 3020
12 13 a b c d	g a d g 1 2 3 4 5	96 300 0.432 0.697 10.436 7.7 2.95 .02 .42	h b e h × 10 17 229.5 30.2 44.2	25 0.5 1.4	400 29 85 999 170 2295 302 442	f c	0.841 3.028 × 1000 1700 22 950 3020 4420
12 13 a b c d e f	g a d g 1 2 3 4 5 2	96 300 0.432 0.697 10.436 7 2.95 .02 .42 .793	h b e b × 10 17 229.5 30.2 30.2 44.2 57.93	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793
12 13 a b c d e	g a d g 11 2 3 4 5 2 3 3	96 300 0.432 0.697 10.436 7 2.95 .02 .42 .793 1.578	h b c c c c c c c c c c c c c c c c c c	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793 21 578
12 13 a b c d e f g	g a d g 11 2 3 4 5 2 3 3	96 300 0.432 0.697 10.436 7 2.95 .02 .02 .42 .793 1.578 3.008	h b e h 17 229.5 30.2 44.2 57.93 215.78 3000000000000000000000000000000000000	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 33008	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793 21 578 33 008
12 13 a b c d e f g	g a d g 11 2 3 4 5 2 3 3	96 300 0.432 0.697 10.436 7 2.95 .02 .02 .42 .793 1.578 3.008	h b e h 17 229.5 30.2 44.2 57.93 215.78 3000000000000000000000000000000000000	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 33008	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793 21 578 33 008
12 13 a b c d e f g h	g a d g 11 2 3 4 5 2 3 3	96 300 0.432 0.697 10.436 7 2.95 02 42 42 1.578 3.008 9.005	h be e h 229.5 30.2 44.2 57.93 215.78 330.08 290.05	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793 21 578 33 008 29 005
12 13 a b c d e f g h	g a d g 11 2 3 4 5 2 3 2 3 2	96 300 0.432 0.697 10.436 7.7 2.95 0.02 4.2 7.93 1.578 3.008 9.005	h b e h 229.5 30.2 44.2 57.93 215.78 330.08 290.05 ÷ 10	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5 ÷ 100	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793 21 578 33 008 29 005 ÷ 1000
12 13 a b c d e f g h	g a d g 1 2 3 4 5 2 3 3 2 3 7 7 7 7	96 300 0.432 0.697 10.436 7.7 2.95 0.02 4.2 7.93 1.578 3.008 9.005	h b e h × 10 17 229.5 30.2 44.2 57.93 215.78 330.08 290.05 × 10 7.4	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5 • 100 0.74	f c	0.841 3.028 * 1000 1700 22 950 3020 4420 5793 21 578 33 008 29 005 * 1000 0.074
12 13 a b c d e f g h 14 a b	g a d g 1 2 3 4 5 2 3 2 3 2 7 7 7 7 1	96 300 0.432 0.697 10.436 7 2.95 .02 .42 .793 1.578 3.008 9.005 4 4	h b b e h × 10 229.5 30.2 44.2 57.93 215.78 330.08 290.05 × 10	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5 ÷ 100 0.74 0.07	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793 21 578 33 008 29 005 • 1000 0.074 0.007
12 13 a b c d e f g h 14 a b c c	g a d g 1 2 3 4 5 2 3 2 3 2 7 7 7 7 1 3 3	96 300 0.432 0.697 10.436 7 2.95 .02 .02 .42 .793 1.578 3.008 9.005 4 4 4 8	h b b e h × 10 229.5 30.2 44.2 57.93 215.78 330.08 290.05 × 10 × 10 7.4 0.7 1.8	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5 ÷ 100 0.74 0.74 0.07 0.18	f c	0.841 3.028 22 950 3020 4420 5793 21 578 33 008 29 005 ÷ 1000 0.074 0.074 0.007 0.018
12 13 a b c d e f g h 14 a b c d	g a d g 1 2 3 4 5 2 3 4 5 2 3 2 7 7 7 1 3 2 7 7 7 1 3 3 2	96 300 0.432 0.697 10.436 7 2.95 .02 .02 .42 .793 1.578 3.008 9.005 4 4. 4 8 8 25	h b b e h × 10 229.5 30.2 44.2 57.93 215.78 330.08 290.05 • 10 7.4 0.7 1.8 32.5	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5 ÷100 0.74 0.07 0.18 3.25	f c	0.841 3.028 × 1000 1700 22 950 3020 4420 5793 21 578 33 008 29 005 ÷ 1000 0.074 0.074 0.007 0.018 0.325
12 13 a b c d e f g h 14 a b c d e c d e f g	g a d g 1 2 3 4 5 2 3 4 5 2 3 2 7 7 7 1 3 2 7 7 1 3 3 2 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 2 1 3 3 2 3 1 3 3 2 3 3 1 2 3 3 1 3 3 1 3 1	96 300 0.432 0.697 10.436 7 2.95 .02 .02 .42 .793 .1.578 3.008 .3 .008 .3 .005 .4 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	h b b e h 17 229.5 30.2 44.2 57.93 215.78 330.08 290.05 ÷ 10 7.4 0.7 1.8 32.5 296.7	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5 ÷100 0.74 0.74 0.07 0.18 3.25 29.67	f c	0.841 3.028 22 950 3020 4420 5793 21 578 33 008 29 005 ÷ 1000 0.074 0.074 0.007 0.018 0.325 2.967
12 13 a b c d e f g h 14 a b c d e f f g h	9 a d 9 1 2 3 4 5 2 3 2 3 2 7 7 7 7 1 3 2 3 3 2 3 1	96 300 0.432 0.697 10.436 7 2.95 0.02 4.2 7.93 1.578 3.008 3.008 3.008 4 3.008 4 4 4 4 4 4 4 5 5 5 6 7 6 7 6 8 2 5	h b b e h 17 229.5 30.2 44.2 57.93 215.78 330.08 290.05 ★ 10 7.4 7.4 0.7 1.8 32.5 296.7 368.2	25 0.5 1.4	400 29 85 999 170 2295 302 442 579.3 2157.8 3300.8 2900.5 • 100 0.74 0.74 0.07 0.74 0.07 0.18 3.25 29.67 36.82	f c	0.841 3.028 22 950 22 950 3020 4420 5793 21 578 33 008 29 005 ÷ 1000 0.074 0.074 0.074 0.007 0.018 0.325 2.967 3.682

Extended practice

- **1** 225 × 4 ÷ 1000
- **2 a** 0.936 (312 × 3 = 936.
 - Divide 936 by 1000 = 0.936) **b** 9.36 (312 × 3 = 936.
 - Divide 936 by 100 = 9.36) 0.609 (203 × 3 = 609. С
 - Divide 609 by 1000 = 0.609) 8.004 (4002 × 2 = 8004.
 - Divide 8004 by 1000 = 8.004)

- 3 2500 (Five jumps would get to one. 50 jumps would get to 10, 500 jumps would get to 100 so 2500 jumps would get to 500.)
- **4 a** 600 **b** 750 **c** 1000 **d** 250 (150 ÷ 0.6)
- **a** \$132.948 (rounded = \$132.95) 5 **b** \$13,294,80
 - **c** \$1329.48 (rounded price = \$1329.50)

Unit 2: Topic 7

Guided practice

- **1** a $\frac{9}{100}$, 0.9, 9%
 - **b** $\frac{99}{100}$, 0.99, 99%
 - **c** $\frac{80}{100} \left(\frac{8}{10} \text{ or } \frac{4}{5}\right), 0.8, 80\%$
 - **d** $\frac{25}{100} \left(\frac{1}{4}\right), 0.25, 25\%$
 - **e** $\frac{50}{100} \left(\frac{1}{2}\right), 0.5, 50\%$
 - **f** $\frac{75}{100} \left(\frac{3}{4}\right)$, 0.75, 75%
- **2** a 0.02, 2%, student shades 2 squares
 - **b** $\frac{20}{100} (\frac{1}{5})$, 20%, student shades 20 squares
 - c $\frac{35}{100} \left(\frac{7}{20}\right)$, 0.35, student shades 35 squares
 - **d** 0.7, 70%, student shades 70 squares

Independent practice

1	F	raction		Decimal	Percentage		
а	$\frac{1}{10}$	5) 00 (or equivalent)		0.15	15%		
b	<u>2</u> 10	² (or equivalent)		0.22	22%		
с	<u>6</u> 10	(or equivalent)		0.6	60%		
d	<u>9</u> 100			0.09	9%		
е	9 10			0.9	90%		
f	<u>5</u> 10	<u>3</u> 00		0.53	53%		
g	$\frac{1}{2}$ (or equivalent)			0.5	50%		
h	$\frac{1}{4}$			0.25	25%		
i	10	lor equivalent)		0.04	4%		
j	$\frac{3}{4}$			0.75	75%		
k	$\frac{1}{5}$			0.2	20%		
2	а	True	b	True	c False		
	d	True	е	False	f False		
	g	g False h		True	i True		
3	а	20%, ¹ / ₄ , 0.3		b 0.07, ⁶ / ₁₀ , 69%			
	с	² / ₁₀₀ , 17%, 0.2	2	d 4%, 0.14, ¹ / ₄			

- **e** 10%, $\frac{1}{5}$, 0.5 **f** $\frac{3}{10}$, 39%, 0.395
- 4 Matching sets are:
 - 5%, 0.05, $\frac{1}{20}$
 - 8%, 0.08 and ⁸/₁₀₀
 - 80%, 0.8 and ⁸/₁₀
- **5** Percentages: 10%, 30%, 60%, 75%, 95% Fractions: $\frac{1}{10}$, $\frac{1}{4}$, $\frac{3}{4}$, $\frac{9}{10}$ (or equivalents)
- **b** 22% **c** 44% 6 a 5%
 - **d** 59% **e** 72% **f** 99%
- 7 Student draws smiley face and arrow pointing to the point approximately mid-way between 0.8 and 0.9.
- 8 a Triangle: 30% **b** Star: 40%
- c Circle: 70% d Hexagon: 90%

Extended practice

- 1 2% of the world's cattle is in Australia.
- 2 $\frac{4}{5}$ of Australian mammal species are found nowhere else in the world.

- 3 The population of Victoria was approximately $5\frac{1}{2}$ million people in 2009.
- 4 15% of the sheep in the Top 10 sheep countries are in Australia.
- The Great Sandy Desert covers one-5 twentieth of Australia
- 6 About 13% of the world's threatened animal species are in Australia.

Unit 3: Topic 1

Guided practice

1	а	8:4	b	3:6	C	9:3
2	а	2:1	b	1:2	С	3:1
	d	1:4	е	2:1	f	5:1
	g	1:3				

Independent practice

1	а	9	b	15	С	24
2	а	6	b	10	С	20
3	а	1:3:5	b	1:3:2	с	2:3:1

- 4 Students should recognise that the ratio of 3:1:2 means that there should be 3 blue squares for each yellow square and every 2 green squares. The simplest solution is to follow this pattern. However, students may choose to colour any 12 squares blue, any 4 squares yellow and any 8 squares green.
- **5 a** Look for students who use appropriate vocabulary, such as, "For every yellow bead there are 3 red beads and 4 blue beads." By this stage, students should be beyond simply counting the number of beads in each colour.
 - **b** 1:3:4
- 6 a & b Students might see that they can substitute the yellow beads in question 5 for green and continue the pattern. In this case, they could describe the pattern in the following way: "For every green bead there are 3 red beads and 4 blue beads." The ratio would be 1:3:4. Students requiring a greater challenge can be encouraged to use a different ratio, such as 1:2:5, with 3 green beads, 6 red beads and 15 blue beads.

7	Flour	Milk	Eggs	Number of pancakes
	120 g	250 mL	1	8
240 g		500 mL	2	16
	480 g	1000 mL or 1L	4	32
	720 g	1.5 L	6	48
	60 g	125 mL	<u>1</u> 2	3

- **8 a** Students who have had experience if finding the highest common factor of a set of numbers will use this skill to work out the ratio of the animals as 3:8:1:2. Others will probably use a process of trial and error.
 - **b** Having worked out the ratio, students should see that Zoe has 4 ducks, 6 sheep, 16 goats and 2 horses.

- 1 a $\frac{3}{4}$ **b** 75% c 0.75
- Students may need to revisit the procedure 2 for finding a fraction of a quantity where the numerator is larger than 1.
 - a 2 oranges, 8 apples
 - **b** 5 oranges, 20 apples
 - c 10 oranges, 40 apples
 - d 7 oranges, 28 apples
- 3 a There are five "portions" and each portion is one-fifth. One-fifth of 45 pieces of fruit is 9 pieces of fruit $(45 \div 5 = 9)$. So, $3 \times 9 = 27$ oranges and $2 \times 9 = 18$ apples.
 - **b** There are seven "portions" and each portion is one-seventh. One-seventh of 56 pieces of fruit is 8 pieces of fruit $(56 \div 7 = 8)$. So, $3 \times 8 = 24$ oranges and $4 \times 8 = 32$ apples.
 - c There are four "portions" and each portion is one-quarter. One-quarter of 32 pieces of fruit is 8 pieces of fruit $(32 \div 4 = 8)$. So, $1 \times 8 = 8$ oranges and 3×8 apples = 24 apples.
 - d There are eight "portions" and each portion is one-eighth. One-eighth of 72 pieces of fruit is 9 pieces of fruit $(72 \div 8 = 9)$. So, $3 \times 9 = 27$ oranges and 5×9 apples = 45 apples.

Unit 4: Topic 1

Guided practice

- **1 a** $4 \times 5 = 20$ **b** $6 \times 4 = 24$
- Position 1 2 3 4 5 6 7 8 9 2 Number 10 9.5 9 8.5 8 7.5 7 6.5 6 Rule: Subtract 0.5
- 3 a Yes (because 24 is divisible by 4). **b** Yes (because 16 is divisible by 4). c No (because 42 is not divisible by 4).
- 4 Teacher to check, e.g. Is the last digit even?

Independent practice

1 Teacher to check, e.g. because only 3 sticks are needed for each square after the first one.

2 Number of sticks **a** 1+4×3=12×1=13 $1 + 6 \times 3 = 1 + 18 = 19$ b **c** 1+8×3=1+24=25

3 True

- Teacher to check, e.g. 4
 - a You use 3 sticks for every triangle.
 - You start with 1 stick and then use b 2 sticks for every triangle or start with 3 sticks for the first triangle and then use 2 for every other triangle.
 - c You use 6 sticks for every hexagon.
 - d You start with 1 stick and then use 5 sticks for every hexagon or start with 6 sticks for the first hexagon and then use 5 for every other hexagon.

- **5 Position** 1 2 3 4 5 6 7 8 9 10 Number 2 5 8 11 14 17 20 23 26 29
- Position
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Number
 1
 4
 9
 16
 25
 36
 49
 64
 81
 100

Rule: Teacher to check, e.g. to find the number, you square the position number or to find the number, you multiply the position number by itself.

- 7 Depending on the experience and ability levels of the students, teachers may wish to discuss and work through the flow chart and model an example to show how the chart works. The division examples allow for various pathways through the flow chart.
 - **a** 114 r2 **b** 137 **c** 86 r1
- 8 Teachers may wish to use this activity as a cooperative group activity. The flow chart is a basic one. A successfully completed chart may look like this:

Extended practice

- 1 Teachers may wish to discuss the use of a formula in order to simplify a rule before students start this work.
- **b** 40 **d** 200 **a** 32 **c** 80 **2** a 10
 - **b** $n = 2 + t \times 2$ or $n = t \times 2 + 2$ (because, apart from the two end tables, only two sides of each rectangle can be used). Note, the above formulae follow the pattern of the other formulae in this topic. However, other formulae are possible. such as $n = 6 + (t - 2) \times 2$. Teacher to decide whether discussion on this is appropriate.
- **c** a) 18; b) 22; c) 42; d) 102

3 a 7 **b** 9 **d** 22 **c** 12

- **4 a** Teacher to check formula, e.g. n = t + 2or n = 2 + t (because, apart from the two end tables, only one side of each triangle can be used). See also note in question 2b.
 - h 22

Unit 4: Topic 2

Guided practice

1	17						
2	а	7		b	10	C	21
	d	6		е	4	f	8
	g	14		h	10		
3	а	12		b	12	C	6
	d	$4\frac{1}{2}$		е	21	f	29
	g	12	h	30	6		
4	а	15		b	10	С	8
	d	2		е	100	f	18
	g	20		h	30		

Independent practice

1 a $5 \times 2 = 2 + 8$ **d** $20 + 7 = (4 + 5) \times 3$

2

f

b $5 \times 5 = 30 - 5$ **e** $\frac{1}{2}$ of 6 + 5 = 24 ÷ 3

c $24 \div 2 = 4 \times 3$

Split the problem to 27×3 60 + 21 = 81 e.g. $= (20 \times 3) + (7 \times 3)$ = 80 + 12 92 23×4 = $(20 \times 4) + (3 \times 4)$ = = а 19×7 $(10 \times 7) + (9 \times 7)$ 70+63 = 133 b = 48×5 $(40 \times 5) + (8 \times 5)$ 200 + 40= 240 С = = 180 + 4237×6 222 d = $(30 \times 6) + (7 \times 6)$ = = 29×5 $(20 \times 5) + (9 \times 5)$ 100 + 45= 145 е = = 280 + 21301 43×7 = $(40 \times 7) + (3 \times 7)$ = = 54×9 = $(50 \times 9) + (4 \times 9)$ 450 + 36 = 486 = g

3	Problem		Change the order to make it simpler		Solve the problem		Answer
e.g.	20 × 17 × 5	=	20×5×17	=	100 × 17	=	1700
а	20 × 13 × 5	=	20 × 5 × 13	=	100 × 13	=	1300
b	25 × 14 × 4	=	25 × 4 × 14	=	100 × 14	=	1400
С	5×19×2	=	5×2×19	=	10 × 19	=	190
d	25 × 7 × 4	=	25×4×7	=	100 × 7	=	700
е	60 × 12 × 5	=	60 × 5 × 12	=	300 × 12	=	3600
f	5 × 18 × 2	=	5×2×18	=	10 × 18	=	180
g	25×7×8	=	25×8×7	=	200×7	=	1400

4	Problem	lles ennecites	Find the velue of A	Check humiding the equation
_	Problem	Use opposites	Find the value of ◊	Check by writing the equation
e.g.	◊ + 15 = 35	◊ = 35 - 15	◊ = 20	20 = 35 - 15
а	$\diamond \times 6 = 54$	◊ = 54 ÷ 6	◊ = 9	$9 \times 6 = 54$
b	◊ + 1.5 = 6	◊ = 6 - 1.5	4.5	4.5 + 1.5 = 6
С	$\frac{1}{4}$ of $\diamondsuit = 10$	$\diamond = 10 \times 4$	40	$\frac{1}{4}$ of 40 = 10
d	◊ × 10 = 45	◊ = 45 ÷ 10	4.5	$4.5 \times 10 = 45$
е	◊ ÷ 10 = 3.5	◊ = 3.5 × 10	35	35 ÷ 10 = 3.5
f	◊ ÷ 4 = 1.5	$\diamond = 1.5 \times 4$	6	6 ÷ 4 = 1.5
g	◊ × 100 = 725	◊ = 725 ÷ 100	7.25	7.25 × 100 = 725

5	Problem	Possible substitutes for \Diamond			Check	
e.g.	$\diamond^2 \times 3 = 75$	4	5	6	7	$5^2 \times 3 = 25 \times 3 = 75$
а	$\diamond \times 3 + 5 = 32$	8	9	10	11	$9 \times 3 + 5 = 32$
b	54÷ ◊ − 5 = 1	9	10	11	12	$54 \div 9 - 5 = 1$
C	2 × ◊ + 5 = 15	2	3	4	5	$2 \times 5 + 5 = 15$
d	15÷ ◊ − 1.5 = 0	5	10	15	20	$15 \div 10 - 1.5 = 0$
е	24×10− ◊ = 228	12	14	16	18	$24 \times 10 - 12 = 228$
f	$\diamond \div 2 = 4^2 + 3$	35	36	37	38	$38 \div 2 = 16 + 3$
g	$(5+\diamond) \times 10 = 25 \times 3$	1.5	2	2.5	3	$(5+2.5) \times 10 = 75$

- **1 a** $\diamond \times 3 4 = 11$, $\diamond \times 3 = 11 + 4$, $\diamond = 15 \div 3$, $\diamond = 5$
- **2 a** 16
 - **b** Answers may vary, e.g. $(10 + 2) \times 4 2$ = 46 or 10 + 2 × 4 - 2 = 16
 - c Answer will depend on the calculator used. Most basic calculators will not be programmed to follow the order of operations and will give the answer 46.
 - **d** Teacher to check, e.g. $(10 + 2) \times 4 2$ = 46, 10 + 2 × (4 - 2) = 14, (10 + 2) × (4 - 2) = 24
- **3** Answers will vary, e.g. 4 4 + 4 4 = 0; $(4 \div 4 4) + 4 = 1$; $4 \div 4 + 4 \div 4 = 2$; $(4 + 4 + 4) \div 4 = 3$; $(4 4) \times 4 + 4 = 4$; $(4 \times 4 + 4) \div 4 = 5$; $(4 + 4) \div 4 + 4 = 6$; $4 + 4 4 \div 4 = 7$; 4 4 + 4 + 4 = 8; $4 \div 4 + 4 + 4 = 9$

Unit 5: Topic 1

Guided practice

1	4 km	4000 m
	7 km	7000 m
	19 km	19 000 m
	6 km	6000 m
	7.5 km	7500 m
	3.5 km	3500 m
	4.25 km	4250 m
	9.75 km	9750 m
2	1 m	100 cm
	4 m	400 cm
	5.5 m	550 cm
	2.5 m	250 cm
	7.1 m	710 cm
	8.2 m	820 cm

156 cm

75 cm

	0	10 1 2.0/ × 10 = 70
3	5 cm	50 mm
	42 cm	420 mm
	9 cm	90 mm
	3.2 cm	32 mm
	7.5 cm	75 mm
	12.5 cm	125 mm
	12.4 cm	124 mm
	9.9 cm	99 mm

4 Teacher to check and possibly ask student to justify answers.

а	cm or mm	b	cm

С	mm	a	m
е	m or cm	f	kr

emorcm fkm

Independent practice

1 Answers may vary. Teachers could ask students to justify answers.

а	The length of a pencil	157 mm	15.7 cm
b	The height of a Year 6 student	1.57 m	157 cm
С	The length of a finger nail	15 mm	1.5 cm
d	The distance around a school yard	157 m	0.157 km
е	The length of a bike ride	1570 m	1.57 km

2	mm	cm and mm	cm
а	45 mm	4 cm 5 mm	4.5 cm
b	75 mm	7 cm 5 mm	7.5 cm
С	82 mm	8 cm 2 mm	8.2 cm
d	69 mm	6 cm 9 mm	6.9 cm

3 Teacher to check. Note: accuracy in measuring is less important than the ability to convert between the units of length.

- **4 a** Teacher to check estimates. Look for estimates expressed in the correct unit and that are reasonable in comparison with the length of Line B.
 - **b** Line A: 6.8 cm, Line C: 9.2 cm
- **5 a** Teacher to check estimates. Look for estimates that are reasonable given the length of Line B.
 - **b** All lines are 6 cm long.

- c Teacher may choose to discuss optical illusions. This particular optical illusion is called the Müller-Lyer illusion and there are various theories as to why we perceive the lines as different in length.
- 6 Allow for a tolerance of +/- 4 mm per rectangle and 3 mm for the triangle. Allow equivalent lengths.

	0		
10 cm		b	11.6 cm
~ ~			0.0

- **c** 9.2 cm **d** 6.3 cm
- 7 Teacher to check.

а

Extended practice

1	Tyrannosaurus Rex	12.8 m	2
	Iguanodon	6800 mm	3
	Microraptor	0.83 m	6
	Homalocephale	290 cm	5
	Saltopus	590 mm	7
	Puertasaurus	3700 cm	1
	Dromiceiomimus	3500 mm	4
	Micropachycephalosaurus	50 cm	8

2 Answers will vary. Look for students who come up with a plausible suggestion such as a dog or a cat.

- 3 Puertasaurus
- Answers will vary, e.g. about 26 (37 ÷ 1.4 = 26.43). Look for students who can make a reasonable estimate of the height of Year 6 students and use this to come up with a plausible response.
- **5** Answers will vary. Look for students who are able to make a reasonable estimate of their own height and to accurately calculate the difference between their given height and that of the microraptor.
- 6 Teacher to check and decide on level of accuracy that is required. Looking at problem-solving strategies may be seen to be more important than absolute accuracy.

Unit 5: Topic 2

Guided practice

1	80	cm ²				
2	12	cm ²				
3	10	cm ²				
4	а	2	b	2	с	4 cm ²
5	а	2 cm ²	b	9 cm ²	с	18 cm ²
Ir	nde	ependen	t p	ractice		
1	а	L: 3 cm, W	: 2 c	m, A: 6 cm ²		
	b	L: 3 cm, W	:5c	m, A: 15 cm	2	
2	а	40 m ²	b	63 m²	С	150 m ²
3	а	21 m ²	b	56 m ²	c	24 m²
4	w fo	udents' own ho show an u rmula would ape is not a i	unde not	erstanding of work, e.g. b	Ŵ	ny the
4 5	wl foi sh	ho show an u rmula would	unde not recta	erstanding of work, e.g. b	f wl eca	ny the
	wl foi sh a	ho show an u rmula would ape is not a i 20 cm ²	not recta b	erstanding of work, e.g. b angle.	f wl eca	ny the luse the
	wl foi sh a d	ho show an u rmula would ape is not a i 20 cm ²	not recta b	erstanding of work, e.g. b angle. 25 cm ²	f wl eca	ny the luse the
5	wl foi sh a d	ho show an u rmula would ape is not a 20 cm ² 16 cm ² 000 m ²	not recta b e	erstanding of work, e.g. b angle. 25 cm ² 16 cm ²	f wl eca	ny the luse the
5	wl foi sh a d 50	ho show an u rmula would ape is not a 20 cm ² 16 cm ² 000 m ²	not recta b e	erstanding of work, e.g. b angle. 25 cm ² 16 cm ²	f wl eca	ny the luse the

8 $30 \text{ cm} \times 21 \text{ cm} = 630 \text{ cm}^2$

1.56 m

0.75 m

- **1 a** ABCD = 20 cm², ABC = 10 cm²
 - **b** EFGH = 18 cm^2 , EFG = 9 cm^2
 - **c** IJKL = 21 cm², JKL = 10.5 (10 $\frac{1}{2}$) cm² **d** MNOP = 16 cm², NOQ = 8 cm²
- **2** a 12 cm²

b 7.5 (7¹/₂) cm²

c $12.5 (12\frac{1}{2}) \text{ cm}^2$

Unit 5: Topic 3

Guided practice

		ada pradado	
1	а	8 cm ³	b 16 cm ³
	С	12 cm ³	d 12 cm ³
2	а	12 cm³, 3, 36 cm³	
	b	8 cm³, 2, 16 cm³	
3	а	3 kL	3000 L
		9 kL	9000 L
		3.5 kL	3500 L
		6.25 kL	6250 L
			1
	b	2 L	2000 mL
		7 L	7000 mL
		5.75 L	5750 mL
		4.5 L	4500 mL
	С	500 cm ³	500 mL
		225 cm ³	225 mL

 200 cm³
 225 cm³
 225 mL

 1000 cm³
 1 L

 1750 cm³
 1750 mL or 1.75 L

Independent practice

- **1 a** 15 **b** 15 cm³
- 2 Teacher to check. Look for students who are able to find the correct answer using a reliable strategy, e.g. because 6 cm³ would fit on the top layer and there are two layers the same.
- **3** Teacher to check, e.g. you multiply the width by the length to find the number of cubes that will fit on the one layer and then multiply that by the height to find the volume. ($V = L \times W \times H$)

4	а	40 cm ³	b	18 cm ³	С	48 cm ³
	d	48 cm ³	е	80 cm ³	f	180 cm ³

- 5 B, C, A, D, F, G, E
- 6 a 1400 mL b 1500 mL c 1300 mL d 1250 mL e 750 mL f 1350 mL Teacher to check that the shading is appropriate.

Extended practice

- 1 The most likely answer is millimetres. Students could be asked to justify their responses.
- **2** $30 \text{ m} \times 3 \text{ m} \times 0.15 \text{ m} = 13.5 \text{ m}^3$,
- 3 Teacher to check. Look for students who are able to accurately follow the directions and who make the link between volume and capacity to arrive at a plausible answer. Note: equipment in primary schools is not usually accurate enough to prove that 1 mL water has a volume of exactly 1 cm³. Teachers may choose to discuss this with students.

Unit 5: Topic 4

Guided practice

1

	-	
а	5 t	5000 kg
	7.5 t	7500 kg
	1.25 t	1250 kg
	2.355 t	2355 kg
	0.995 t	995 kg
. 1	-	
b	3.5 kg	3500 g
	4.5 kg	4500 g
	0.85 kg	850 g
	0.25 kg	250 g
	3.1 ka	3100 a

5.5 g	5500 mg
3.75 g	3750 mg
1.1 g	1100 mg
0.355 g	355 mg
0.001 g	1 mg

a-d Multiple possible answers, e.g.
 a: a truck, b: a person, c: flour, d: a grain of salt. Look for students who make appropriate choices for each unit of mass and who can justify their answers.

	3	kg and fraction	kg and decimal	kg and g
	а	3 ¹ / ₂ kg	3.5 kg	3 kg 500 g
	b	2 ¹ / ₂ kg	2.5 kg	2 kg 500 g
	c	3 ¹ / ₄ kg	3.25 kg	3 kg 250 g
-	d	4 <u>7</u> 10 kg	4.7 kg	4 kg 700g
	е	1 ⁹ / ₁₀ kg	1.9 kg	1 kg 900 g

Independent practice

- 1 a 1 kg 700 g (or equivalent)
- **b** 4 kg 250 g (or equivalent)
- c 850 g (or equivalent) (Allow a tolerance of +/- 10 g)
- 2 Most likely answers are below. Look for students who can explain why they would choose the particular scale to find the mass of each item.
 - a Scale C
 - **b** Scale B
 - c Scale A
 - d Scale B or C
- **3** The scale has 50 g increments so the pointer should be between 900 and 950. Teacher to decide on the required level of accuracy.

- **4 a** B, A, C, D **b** A & B (exactly 5 t)
 - **c** C & D (5.945 t)

- **5** Teacher to check. Look for students who are able to describe the relationship between the total mass of the pad and the mass of each sheet, e.g. find the mass of 100 sheets and divide the answer by 100.
- 6 Check that the total equals 1.85 kg and also that the masses are appropriate. (For example, one item at 1.844 kg and the remaining six items at 1 g would not be appropriate.)
- 7 a 62.5 kg
 - **b** Twelve Year 6 students. (12 × 40 kg = 480 kg, 13 × 40 kg = 520 kg)
- 8 Check that total equals 1 kg and also that the masses are appropriate. (For example, one mango at 985 g and the remaining three at 5 g would not be appropriate.)

Extended practice

- Teacher to check. Look for students who are able to come up with a strategy that connects millilitres and grams and demonstrates their understanding of mass. It is unlikely for normal primary classroom equipment to be accurate enough to prove that 1 mL of water has a mass of 1 g. This could be a useful discussion point for students.
- 2 a potato crisps
 - b breakfast cereal has 40 mg more sodium. (However, students could be asked to consider the normal serving size.)
 - c 505 mg (2 × 135 mg + 55 mg + 180 mg)
 d 216 mg (Total = 2516 mg less 2300 mg = 216 mg)

Unit 5: Topic 5

Guided practice

- **1** a 1:20 pm, 1320
 - **b** 6:48 pm, 1848
 - **c** Clock to show 2:42, 0242
 - **d** 11:07 pm, 2307
 - e Clock to show 10:22, 10:22 pm
 - f 6:27 am, 0627
 - **g** Clock to show 10:35, 1035
 - **h** Clock to show 11:59, 11:59 pm

Independent practice

- 1 54 minutes
- **2** Train 8221
- 3 9 minutes
- 4 Train 8215
- **5** Because the train only stops there to pick up passengers.
- 6 55 minutes

Station	Time
Southern Cross	1630
Footscray	1638
Werribee	1656
Little River	1704
Lara	1710
Corio	1714
North Shore	1716
North Geelong	1720
Geelong	1724

9 1971 (allow 1972 at teacher's discretion)

Extended practice

1 a 3 hours **b** 2 hours 51 minutes 9 minutes С 3:26 pm **b** Clock to show 3:26 2 а 22 minutes

3	Departs Big Town	Arrives Small Town
Bus A	1208	1507
Bus B	1533	1832
Bus C	1954	2253

Unit 6: Topic 1

Guided practice

- **1 a** regular hexagon
 - **b** irregular quadrilateral
 - c regular quadrilateral (square)
 - d irregular pentagon
 - regular octagon е
 - f regular pentagon
 - irregular triangle g
 - h irregular hexagon
- 2 It has five equal sides and some of the angles are the same size.

Independent practice

- 1 Teacher to check descriptions. For example:
 - Equilateral triangle. All the angles are the same size. All the sides are the same length.
 - **b** Isosceles triangle. Two angles are the same size. Two sides are the same length
 - Right-angled scalene triangle. All the С sides are different lengths. One angle is a right angle

- d Right-angled isosceles triangle. Two sides are the same length. One angle is a right angle.
- Scalene triangle. All sides are different е lengths. All angles are different sizes.
- 2 Teacher to check descriptions. For example:
 - **a** Square. All the angles are right angles. All the sides are the same length.
 - Trapezium. There are two obtuse angles. h There is one pair of parallel sides.
 - **c** Rectangle. All the angles are right angles. Two pairs of sides are the same length.
 - d Parallelogram. There are two pairs of parallel sides. There are two obtuse and two acute angles
 - Rhombus. All the sides are the same length. There are two pairs of parallel sides.
- 3 Teacher to check. Examples of similarities and differences that can be observed:

	Similarities	Differences
а	Neither shape has any straight lines.	The diameters on the circle are all the same length but they are different on the oval.
b	They are both regular shapes.	One has five sides and the other has eight sides.
C	They each have at least one pair of parallel sides	The parallelogram has two pairs of parallel sides but the trapezium has only one.
d	They are both irregular hexagons.	One has three pairs of parallel sides but the other has only one pair.
е	They are both pentagons.	One is regular but the other is not.
f	They are both parallelograms.	One (the rhombus) has all sides of equal length but the other does not.
g	They are both quadrilaterals.	One has obtuse and acute angles and the other has four right angles.
h	They are both right-angled triangles.	The first is a scalene triangle but the second is isosceles.
i	They both have a right angle.	The first shape has a reflex angle.
j	They are both octagons.	The first is a regular octagon but the second octagon is not.
k	They both have at least four reflex angles.	The first shape has 10 sides but the second shape has 8 sides.

Extended practice

- a circumference **b** radius
- diameter С
- a sector **b** quadrant
- c semi-circle
- Teacher to check and to decide on the level 3 of accuracy that is appropriate.

4 8

2

Unit 6: Topic 2

Guided practice

- **1 a** rectangular prism
 - **b** square (-based) pyramid
 - c triangular prism
 - d cylinder e octagonal prism

- f hexagonal pyramid
- g square prism
- h cone
- triangular pyramid i.

Independent practice

- 1 a rectangular prism **b** square (-based) pyramid
- 2 Teacher to check. Note: it may be necessary to discuss the reason for adding tags to some of the faces. The
- page could be enlarged by photocopying. Alternatively, students could copy the nets onto grids of a larger size.
- 3 Teacher to check. Note: teachers will probably wish to provide extra paper for additional practice and to reassure students that success is not necessarily assured at the first attempts in such activities. Look for students who show an understanding of the faces and edges of 3D shapes and are able to accurately reproduce them on isometric dot paper.

Extended practice

1	Name	Number of faces	Number of vertices	Number of edges	Does Euler's Law work?
а	rectangular prism	6	8	12	Yes (14 - 12 = 2)
b	hexagonal prism	8	12	18	Yes (20 - 18 = 2)
C	square (-based) pyramid	5	5	8	Yes (10-8=2)
d	triangular prism	5	6	9	Yes (11 – 9 = 2)
е	triangular pyramid	4	4	6	Yes (8-6=2)
f	square prism	6	8	12	Yes (14 - 12 = 2)
g	pentagonal prism	7	10	15	Yes (17 – 15 = 2)
h	octagonal prism	10	16	24	Yes (26-24=2)

Unit 7: Topic 1

Guided practice

- **1 a** 80°, acute b 100°, obtuse c 35°, acute d 145°, obtuse
- 2 Teacher to check that angles of 25° are drawn. (Decide whether to allow a tolerance of x° .) Look for students who understand how to align the centre of the protractor
- correctly along the baseline of the angle and who understand which set of numbers on the protractor to read.

Independent practice

1 (Allow a tolerance of $+/-1^{\circ}$)

	а	125°	b	165°	C	99°	d	169°
2	Те	acher to	o che	eck, e.g	. The	e size	of the	
	"0	utside a	ingle	e" is 40'	^o less	s than	360°.	

3	а	330°	b	315°	C	215°	d	265°
4	а	95°	b	112°	С	270°	d	120°
	е	333°	f	40°	g	30°	h	120°
	i.	45°	j	155°				

- **1 a** a = 60°, b = 180°
 - **b** a = 125°, b = 55°, c = 125°
 - **c** a = 48°, b = 132°, c = 132°
 - **d** a = 50°
- 2 b = 38°, c = 142°, d = 38° e = 38°, f = 142°, g = 38°, h = 142° i = 142°, j = 38°, k = 142°, l = 38°, m = 38°, n = 142°, o = 38°, p = 142°
- **3** Teacher to check and decide on level of accuracy that is required. Looking at problem-solving strategies may be seen to be more important than absolute accuracy.

Unit 8: Topic 1

Guided practice

- 1 a reflection b translation c rotation
- Provide the state of the sta

Independent practice

- 1 Teacher to check descriptions. For example:
 - **a** The hexagon has been translated horizontally.
 - **b** The triangle has been rotated horizontally.
 - **c** The hexagon has been translated vertically.
 - **d** The pentagon has been reflected vertically.
 - e The triangle has been reflected horizontally and vertically.
 - f The arrow has been translated horizontally. The second row is the same as the first one, but it has been reflected horizontally.
- 2 Teacher to check pattern. Look for students who can accurately use the language of transformation to describe the pattern.
- **3** Teacher to check patterns. (Shapes are coloured to simplify the identification of the patterns.) Examples of possible descriptions:
 - a The shape has been reflected horizontally on the first row. The second row is a vertical reflection of the first row.
 - **b** The shape is rotated through 180° clockwise on the first row (or has been reflected horizontally then vertically on the first row). The second row is a vertical translation of the first row.
 - **c** The shape is translated horizontally on the first row. The second row is a vertical reflection of the first row.
- **4** Teacher to check pattern. Look for students who are able to successfully demonstrate their understanding of transformations through the construction of their pattern.

Extended practice

1 & 2 Teacher to check. Look for students who are able to demonstrate proficiency with digital technologies to construct a pattern that draws on their understanding of transformations.

Unit 8: Topic 2

Guided practice

- 1 yellow triangle
- **2 a** (-8,-6) **b** (4,4)
- 3 green circle and yellow triangle
- 4 True
- **5 a** The student draws a line from the origin point to the yellow triangle.
 - **b** (1,-1), (2,-2), (3,-3) **c & d** Teacher to check. Look for students
 - who demonstrate an understanding of the quadrant system and who interpret the coordinates correctly.

Independent practice

- **1 a** (3,5) **b** (-4,5) **c** (-4,1) **d** (3,1)
- **2** $(-6,5) \rightarrow (-7,3)$
- **3** Starting point students' choice. Endpoint must be the same as the starting point, e.g. $(-4,1) \rightarrow (3,1) \rightarrow (3,5) \rightarrow (-4,5) \rightarrow (-4,1)$
- 4 Teacher to check drawing and coordinates. (It can be an advantage to ask students to give each other their plotted points to check that the drawings match the ordered pairs.) Look for students who demonstrate an understanding of how ordered pairs work and who can use them to accurately describe the points of their figure.

Extended practice

Unit 9: Topic 1

Guided practice

- **1 a** 42 **b** 6
- **2** 2

4 9

3 Accept from \$310 to \$315.

Independent practice

- 1 a Teacher to check students' graphs.b 27 (Red & blue = 50.
 - Yellow and purple = 23.50 23 = 27)

- **2** Teacher to check information. Totals must be 6 more than the information from question 1.
- **3 a** Teacher to check graph. The most appropriate increment for the vertical axis is 3, as the highest possible bar total is 32.
 - **b** Answers will vary, e.g. a bar graph because it is easier to work out the numbers for each bar, or a pictograph because it looks better.

- **b** Teacher to check. Look for students who comment on the information (rather than on the appearance of the graph). For example, the lowest temperature was at 7 am, OR the temperature remained the same between 1200 and 1300 (not "I like the way the lines go up and down").
- 5 Teacher to check. Look for the way that the student labels the graph and, if necessary, whether an appropriate scale has been used. An appropriate way to present the information would be on a dot plot, a bar graph or a pictograph. Students who choose a line graph have not understood that this is used to show how recorded data changes over a period of time.

- **1 a** Annabelle, Jade and Eva **b** Approximately one-sixteenth
- 2 a Numbers for each name
 - **b** Any two numbers around 600 that have a difference of 14. (The actual numbers were 612 named Eva and 598 named Annabelle.)
- 3 Teacher to check, e.g. Similarities: Half of each graph is taken up with one name. The proportion of the second most popular name to the most popular name is about the same on each graph (half). There are two names on each graph that are about as popular as each other.

Differences: The fraction of the second most popular name is slightly smaller for girls than it was for boys.

Note for teachers: The information was taken from a Victorian government website. The data was deliberately chosen to make the graphs look similar. The names are all from the top 100, but the positions of the names in the top 100 are different

on each. For example, the top boys' name (Jack) was deliberately not included, whereas the top girls' name was. See more at https://online.justice.vic.gov.au/bdm/ popular-names.

- 4 a Any number between 1550 and 1649. (Actual number was 1596).
 - Teacher to check, e.g. there were b more than 1500 more babies with the top name for boys than there were for airls

Unit 9: Topic 2

Guided practice

- 1 a secondary **b** primary
- 2 Some questions may have two possible answers. Teachers may wish students to justify their responses. Likely answers are: a sample b census
 - sample or census (depending on size C of school)
 - d sample
- 3 a primary **b** sample

Independent practice

- 1 Secondary data (the class teacher did the survey).
- **2** a $5\left(\frac{5}{8}\right)$ **b** $1\left(\frac{1}{8}\right)$
- 3 Yes, because the principal wrote that it was the majority of the students who were surveyed.
- It could be true (because it is not clear what 4 the other students would have answered).
- ... and could be true. Teachers may wish to open up a discussion about this as it raises issues about data in the media. Many may disagree with the newspaper headline but we cannot be sure what the majority of

students in the town think (although neither could the newspaper editor!).

- 6 **a** About \$130 to \$135
 - b four
 - c About \$42
- 7 a sample
 - b Teacher to check e.g. "No, because it was only based on the views of 200 people". This issue could be used as a basis for a group or class discussion. **c** 180 ($\frac{9}{10}$ of 200)

Extended practice

- 1 a sample **b** secondary
- 2 a Any number over 50
 - **b** 49%
 - c Teacher to check, e.g. the public has a right to know how many people were surveyed and what type of people they were.
- **3** a Teacher to check. Look for students who show an understanding of data collection and the importance of accurately representing data and its sources; e.g. the people surveyed (all students) were not a fair representation of public opinion.
 - **b** Teacher to check. Look for students who show an understanding of how data collection influences results and can apply this to the situation, e.g. carry out a survey of 100 people of various ages and backgrounds.
 - Teacher to check, e.g. it is based on truth, but it cannot necessarily be trusted as a fair reflection of public opinion. This is a possible group or class discussion point.
- 4 a Teacher to check. Look for students who can offer reasoning to demonstrate their understanding of manipulation of survey responses, e.g. because it probably influenced the answers that people gave.
 - h Teacher to check. Look for students who choose a question that is likely to result in the collection of more accurate data, e.g. Do you think a fast-food restaurant should be opened near the high school?

Unit 9: Topic 3

Guided practice

- **a** Range is 16% to 80% = 64%
- Range is 75 cm to 150 = 75 cm b
- 35% **b** 76 2 а
- 3 а 44% b 16 4 15
 - **a** 30% b

Independent practice

1	Week	Seven-day minimum temperatures	Order	Range	Mode	Median	Mean
	1	3°, 6°, 7°, 9°, 7°, 8°, 2°	2°, 3°, 6°, 7°, 7°, 8°, 9°	7°	7°	7°	6 °
	2	1 °, 3 °, 2 °, 9 °, 7 °, 7 °, 6 °	1 °, 2 °, 3 °, 6 °, 7 °, 7 °, 9 °	7 °	7 °	6 °	5°
	3	9°, 6°, 8°, 8°, 10°, 7°, 8°	6°, 7°, 8°, 8°, 8°, 9°, 10°	4 °	8 °	8 °	9 °
	4	10 °, 9 °, 10 °, 8 °, 7 °, 3 °, 2 °	2 °, 3 °, 7 °, 8 °, 9 °, 10 °, 10 °	8 °	10 °	8 °	9 °

2		Number set	Order	Range	Median
	а	8, 2, 6, 4, 10	2, 4, 6, 8, 10	8	6
	b	25, 14, 17, 12, 6, 4	4, 6, 12, 14, 17, 25	21	13
	С	12, 8, 2, 6, 2, 5, 21	2, 2, 5, 6, 8, 12, 21	19	6
	d	82, 23, 3, 8, 15, 3, 16, 2	2, 3, 3, 8, 15, 16, 23, 82	80	11.5 or 11½

3		Number set	Mode	Mean
	а	8, 2, 6, 4, 10	None	6°
	b	25, 14, 17, 12, 6, 4	None	13
	С	12, 8, 2, 6, 2, 5, 21	2	8
	d	82, 23, 3, 8, 15, 3, 16, 2	3	19

4 a This could be done as a 'think, pair, share' activity, with students sharing their thoughts before arriving at their responses.

The modes should be fairly easy to estimate as (8 hours for Sydney and 6 hours for London).

Looking at the high and low points for each city is likely to result in answers of around 6 or 7 hours of sunshine a day for Sydney and 3, 4 or 5 hours a day of sunshine for London.

b		Sydney	London
	Mode	8 hours	6 hours
	Mean	88 ÷ 12 = 7.33 (rounded to 7 hours)	$50 \div 12 = 4.166$ (rounded to 4 hours)

- c This could take the form of a class or group discussion. Answers will vary. Responses will likely revolve around the difficulty to accurately estimate the mean without doing a calculation.
- **d** Sydney. The mode (8) is only slightly more than the median (7.5) compared to London, where the mode (6) is 1.5 hours different to the median (4.5).
- e London. The mean for October to March is $16 \div 6 = 2.66$ hours a day, rounded to 3 hours. The mean for April to September is $34 \div 6 = 5.66$ hours a day, rounded to 6 hours. The difference is an average of 3 hours a day less sunshine in the colder months.
- f Sydney. The mean for October to March is $46 \div 6 = 7.66$ hours a day, rounded to 8 hours. The mean for April to September is $42 \div 6 = 7$ hours a day. The difference is 1 hour a day less sunshine in the colder months.

Extended practice

- **1 a** Yes, technically Sam is correct because 10 occurs more frequently than the other scores.
 - **b** Answers will vary, teacher to check. A possible answer is that more than half of the scores are less than 10, with two of the scores being very low.
 - **c** The median score is 7 out of 10.
 - d The mean score is 6 out of 10.
 Teachers may choose to ask students to reflect on whether Sam's achievement level is best reflected by the mean, median or mode.
- **2 a** The range is 19 (20 1 + 19).
 - **b** 19 **c** 19
 - **d** The mean score is $155 \div 10 = 15.5$ or $15\frac{1}{2}$.
 - e Teachers may choose to use this task for a group discussion about why the mean score does not reflect Sam's ability. The score of 1 out of 20 could be for a variety of reasons ranging from lack of effort to not feeling very well. When interpreting data in the real world, an anomaly (or outlier) is often ignored in order to give a truer interpretation of the data. Students could be further extended by carrying out a similar activity for their own assessments.
- 3 This could be carried out as a group activity. Multiple answers are possible. Look for students who total the four temperatures (108) and subtract this from 203 (7 x 29). The answer of 95 needs to be divided appropriately between the three remaining days. For example, 31 °C, 32 °C and 32 °C, instead of 93 °C, 1 °C and 1 °C.

Unit 10: Topic 1

Guided practice

- 1 Teacher to check. Answers may vary and students could be asked to justify their answers. Probable answers are:
 - a even chance b highly likely
 - c impossible d likely e certain f highly
 - f highly unlikely
 - **g** unlikely
- **2** $\frac{1}{10}$ (1 out of 10)
- **3** 50%
- **4** 0.3

Independent practice

- **1** 15%
- 2 Students may choose a fraction, a decimal and a percentage in any order but possible answers are:
- **a** $\frac{2}{10}$ (or $\frac{1}{5}$) **b** 0.4 **c** 10% **3** There are 8 out of 10 ways the spinner will
- **3** There are 8 out of 10 ways the spinner will not land on green. Answers should be any or all of $\frac{8}{10}$, $\frac{4}{5}$, 0.8 or 80%.
- 4 Teacher to check the appropriateness of student responses. Look for students who demonstrate an understanding of the language and application of probability and who are able to justify their responses.
- 5 Teacher to check. Sectors should be coloured as follows:
- yellow: 2 sectors
 green: 2 sectors
 white: 2 sectors
- red: 1 sector 6 a 0.8 b $\frac{7}{10}$ c 0.07 d $\frac{4}{10}$ e $\frac{3}{4}$ f 8%
- 7 $\frac{4}{10}$

8 2 should be red, 4 should be yellow and 6 should be blue

- A: 25 blue & 75 yellow
 B: 60 blue & 40 yellow
 C: 90 blue & 10 yellow
 - D: 50 blue & 50 yellow

Extended practice

- 1 a 37 b \$37 c Answers may vary, e.g. because the
 - boss only gives back \$36 of the \$37. d \$1000
- 2 a Answers may vary, e.g. 18 out of 37 is almost the same as 18 out of 36, and 18 out of 36 = $\frac{1}{2}$.
 - **b** 19
 - c Students' own responses, e.g. because \$37 was collected but the boss only paid back \$36. Look for students who understand the probability of landing on black and can apply this to supply a plausible response.
 - **d** \$10 000

Unit 10: Topic 2

Guided practice

- **1 a** $\frac{5}{6}$ or 5 out of 6
 - b Students' own responses. Look for students who demonstrate an understanding of probability and the fact that, although there is a greater chance of not rolling a 6, it is still possible, e.g. each number has the same chance so there is as much chance for 6 as for every other number.
- 2 Answers will vary. This could prove an interesting group or class discussion point, with students being asked to justify their responses. Look for students who can explain why different students obtained different results using the language of probability.
- **3** The probability for each number is 6. The likelihood of this occurring is probably not very high given the relatively small number of rolls of the dice. This could prove an interesting group or class discussion point about what would be likely to happen after, say, 360 or 3600 rolls of the dice.

Independent practice

1 a 2 **b** one (1 + 1)

b one (1 + 1)						
2	Total of two dice	Ways the dice can land	Total number of ways			
	12	6 + 6	1			
	11	6 + 5, 5 + 6	2			
	10	6 + 4, 4 + 6, 5 + 5	3			
	9	6 + 3, 3 + 6, 5 + 4, 4 + 5	4			
	8	6+2,2+6,5+3,3+5,4+4	5			
	7	6 + 1, 1 + 6, 5 + 2, 2 + 5, 4 + 3, 3 + 4	6			
	6	5 + 1, 1 + 5, 4 + 2, 2 + 4, 3 + 3	5			
	5	4 + 1, 1 + 4, 3 + 2, 2 + 3	4			
	4	3 + 1, 1 + 3, 2 + 2	3			
	3	2 + 1, 1 + 2	2			
	2	1 + 1	1			

3 7 (6 out of 36 ways)

4 Allow fractional equivalents of the following:

a $\frac{2}{36}$	b $\frac{3}{36}$	C $\frac{4}{36}$
d $\frac{5}{36}$	e 6/36	f 5/36
g $\frac{4}{36}$	h 36	i 2 36
j ¹ / ₃₆	k 0/36	

5	Probable number of times for each total:					
	12: 2	11: 4	10: 6	9:8		
	8: 10	7: 12	6: 10	5: 8		
	4:6	3:4	2:2			

6 Answers may vary, but likely answers are: Spinner 1: ³/₂₀ yellow, ¹¹/₂₀ blue, ⁶/₂₀ red; Spinner 2: ¹/₁₂ yellow, ⁷/₁₂ blue, ⁴/₁₂ red.

Extended practice

- **1 a** 1 out of 7 **b** one counter
- **2-3** Teachers may wish to model this game with students and discuss the implications of the game, which demonstrates why the only sure, long-term winner in a gambling situation is the "banker". It may be necessary to allow more than ten rounds of the game to establish a pattern. Teachers will also decide whether to "tweak" the rules so that each player must choose a different number each time. In this case the banker's balance is certain to increase by one counter each round. However, if, for example, each of the seven students "bets" on the same number and the spinner lands on that number, the "banker" will obviously lose. In the long term, however, the probabilities of the game will ensure that the only certain winner is the "banker".

Oxford Mathematics Primary Years Programme is a comprehensive and engaging series for Kindergarten to Year 6. Designed by experienced classroom teachers, it supports sequential acquisition of mathematical skills and concepts, incorporates an inquiry-based approach, and is fully aligned with the understandings and outcomes of the PYP K–6 mathematics curriculum.

The series includes:

- **Student Books** with guided, independent and extended learning activities to help students understand mathematical skills and concepts
- **Practice and Mastery Books** (Years 1–6) with reinforcement activities and real-world problems that allow students to explore and apply their knowledge
- **Teacher Books** with hands-on activities, blackline masters and activity sheets, as well as pre- and post-assessment tests for every topic.

Oxford Mathematics Primary Years Programme supports differentiation in the classroom by helping teachers find the right pathway for every student, ensuring that each child can access the PYP mathematics curriculum at their own point of need.

How to get in contact: web **www.oxfordprimary.com/pyp** email **schools.enquiries.uk@oup.com** tel +44 (0)1536 452620 fax +44 (0)1865 313472

