Markscheme

November 2016

Sets, groups and relations

Higher level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1
 General

Mark according to $\mathrm{RM}^{\text {™ }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM ${ }^{\text {тм }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 . .$. (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i) (1365)(24)
(ii) 4

A1
[3 marks]
Note: In (b) (c) and (d) single cycles can be omitted.
(b) (i) $\quad(16245)(3)$

A1
(ii) 5

A1
[2 marks]
(c) $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 1 & 3 & 4\end{array}\right)=\left(\begin{array}{lllll}1 & 5 & 3 & 6 & 4\end{array}\right)(2)$
(M1)A1
[2 marks]
(d) $\left.\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 6\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right) 56\right)(4)$

Note: Award A2A0 for (c) and (d) combined, if answers are the wrong way round.
[2 marks]
(e) $6!=720$

A2
[2 marks]
(f) any composition of the cycles (1 2), (3 4) and (5 6) so $2^{3}=8$
2. (a) (i)

Notes: Award A1 for general shape, labelled asymptotes, and showing that $x \neq 0$.
graph shows that it is injective since it is increasing or by the horizontal line test
graph shows that it is surjective by the horizontal line test
Note: Allow any convincing reasoning.
so f is a bijection $\boldsymbol{A 1}$
(ii) closed since non-zero real times non-zero real equals non-zero real $\boldsymbol{A 1 R 1}$ we know multiplication is associative R1
identity is $1 \quad$ A1
inverse of x is $\frac{1}{x}(x \neq 0) \quad$ A1
hence it is a group AG
(iii) B does not have an identity A2
hence it is not a group AG
(iv) $f(1 \times 1)=f(1)=\frac{1}{2}$ whereas $f(1) \times f(1)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$ is one
counterexample
A2
hence statement is not satisfied

Question 2 continued
(b) (i)

award $\boldsymbol{A 1}$ for general shape going through $(0,1)$ and with domain $\mathbb{R} \quad$ A1 graph shows that it is injective since it is increasing or by the horizontal line test and graph shows that it is surjective by the horizontal line test

Note: Allow any convincing reasoning.
so g is a bijection
(ii) $\quad g(a+b)=\mathrm{e}^{a+b}$ and $g(a) \times g(b)=\mathrm{e}^{a} \times \mathrm{e}^{b}=\mathrm{e}^{a+b}$

M1A1
hence $g(a+b)=g(a) \times g(b)$
(iii) since g is a bijection and the homomorphism rule is obeyed
the two groups are isomorphic

Total [21 marks]

3. (a) orders are 1234612

Note: A1 for four or five correct orders.
Note: For the rest of this question condone absence of * and accept equivalent expressions.
order: 1 element: e
A1
$2 \quad a^{2}$ A1
$3 \quad b$ or b^{2} A1
$4 \quad a$ or $a^{3} \quad$ A1
$6 \quad a^{2} * b$ or $a^{2} * b^{2} \quad$ A1
$12 a * b$ or $a * b^{2}$ or $a^{3} * b$ or $a^{3} * b^{2}$

A1
[8 marks]

Question 3 continued
(b) (i) H has order 6
(ii) $H=\left\{e, a^{2} * b, b^{2}, a^{2}, b, a^{2} * b^{2}\right\}$

Note: A2 for 4 or 5 correct. A1 for 2 or 3 correct.
(iii) required coset is Ha (or $a H$)

$$
H a=\left\{a, a^{3} * b, a * b^{2}, a^{3}, a * b, a^{3} * b^{2}\right\}
$$

Total [15 marks]

4. (a) (i) $0 S 0$ is not true so S is not reflexive
(ii) $a S b \Rightarrow a b>0 \Rightarrow b a>0 \Rightarrow b S a$ so S is symmetric
(iii) $a S b$ and $b S c \Rightarrow a b>0$ and $b c>0 \Rightarrow a b^{2} c>0 \Rightarrow a c>0$
since $b^{2}>0$ (as b could not be 0) $\Rightarrow a S c$ so S is transitive
Note: $\boldsymbol{R} \mathbf{1}$ is for indicating that $b^{2}>0$.
(b) since R is not reflexive there is at least one element a belonging to A such that a is not related to a

R1AG
[1 mark]
(c) argue by contradiction: suppose that a is related to some other element b, $i e, a R b$

M1
since R is symmetric $a R b$ implies $b R a \quad$ R1A1
since R is transitive $a R b$ and $b R a$ implies $a R a \quad$ R1A1
giving the required contradiction \quad R1
hence there is at least one element of A that is not related to any other member of A

AG
[6 marks]
Total [11 marks]

