Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Friday 18 November 2016 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Let $\{G, \circ\}$ be the group of all permutations of $1,2,3,4,5,6$ under the operation of composition of permutations.
(a) (i) Write the permutation $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 6 & 2 & 1 \\ \hline\end{array}\right)$ as a composition of disjoint cycles.
(ii) State the order of α.
(b) (i) Write the permutation $\beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 6 & 6 & 6 & 3\end{array}\right)$ as a composition of disjoint cycles.
(ii) State the order of β.
(c) Write the permutation $\alpha \circ \beta$ as a composition of disjoint cycles.
(d) Write the permutation $\beta \circ \alpha$ as a composition of disjoint cycles.
(e) State the order of $\{G, \circ\}$.

Consider the following Venn diagram, where $A=\{1,2,3,4\}, B=\{3,4,5,6\}$.

(f) Find the number of permutations in $\{G, \circ\}$ which will result in A, B and $A \cap B$ remaining unchanged.
2. [Maximum mark: 21]
(a) Let A be the set $\{x \mid x \in \mathbb{R}, x \neq 0\}$. Let B be the set $\{x \mid x \in]-1,+1[, x \neq 0\}$.

A function $f: A \rightarrow B$ is defined by $f(x)=\frac{2}{\pi} \arctan (x)$.
(i) Sketch the graph of $y=f(x)$ and hence justify whether or not f is a bijection.
(ii) Show that A is a group under the binary operation of multiplication.
(iii) Give a reason why B is not a group under the binary operation of multiplication.
(iv) Find an example to show that $f(a \times b)=f(a) \times f(b)$ is not satisfied for all $a, b \in A$.
(b) Let D be the set $\{x \mid x \in \mathbb{R}, x>0\}$.

A function $g: \mathbb{R} \rightarrow D$ is defined by $g(x)=\mathrm{e}^{x}$.
(i) Sketch the graph of $y=g(x)$ and hence justify whether or not g is a bijection.
(ii) Show that $g(a+b)=g(a) \times g(b)$ for all $a, b \in \mathbb{R}$.
(iii) Given that $\{\mathbb{R},+\}$ and $\{D, \times\}$ are both groups, explain whether or not they are isomorphic.
3. [Maximum mark: 15]

An Abelian group, $\{G, *\}$, has 12 different elements which are of the form $a^{i} * b^{j}$ where $i \in\{1,2,3,4\}$ and $j \in\{1,2,3\}$. The elements a and b satisfy $a^{4}=e$ and $b^{3}=e$ where e is the identity.
(a) State the possible orders of an element of $\{G, *\}$ and for each order give an example of an element of that order.

Let $\{H, *\}$ be the proper subgroup of $\{G, *\}$ having the maximum possible order.
(b) (i) State a generator for $\{H, *\}$.
(ii) Write down the elements of $\{H, *\}$.
(iii) Write down the elements of the coset of H containing a.
4. [Maximum mark: 11]

A relation S is defined on \mathbb{R} by $a S b$ if and only if $a b>0$.
(a) Show that S is
(i) not reflexive;
(ii) symmetric;
(iii) transitive.

A relation R is defined on a non-empty set $A . R$ is symmetric and transitive but not reflexive.
(b) Explain why there exists an element $a \in A$ that is not related to itself.
(c) Hence prove that there is at least one element of A that is not related to any other element of A.

