

Mathematics Higher level Paper 3 – sets, relations and groups

Friday 18 November 2016 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Y

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Let $\{G, \circ\}$ be the group of all permutations of 1, 2, 3, 4, 5, 6 under the operation of composition of permutations.

- (a) (i) Write the permutation $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 2 & 1 & 5 \end{pmatrix}$ as a composition of disjoint cycles.
 - (ii) State the order of α . [3]
- (b) (i) Write the permutation $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 5 & 1 & 2 \end{pmatrix}$ as a composition of disjoint cycles.
 - (ii) State the order of β . [2]
- (c) Write the permutation $\alpha \circ \beta$ as a composition of disjoint cycles. [2]
- (d) Write the permutation $\beta \circ \alpha$ as a composition of disjoint cycles. [2]
- (e) State the order of $\{G, \circ\}$.

Consider the following Venn diagram, where $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$.

(f) Find the number of permutations in $\{G, \circ\}$ which will result in A, B and $A \cap B$ remaining unchanged.

[2]

[2]

- 2. [Maximum mark: 21]
 - (a) Let A be the set $\{x \mid x \in \mathbb{R}, x \neq 0\}$. Let B be the set $\{x \mid x \in]-1, +1[, x \neq 0\}$.

A function $f: A \to B$ is defined by $f(x) = \frac{2}{\pi} \arctan(x)$.

- (i) Sketch the graph of y = f(x) and hence justify whether or not f is a bijection.
- (ii) Show that A is a group under the binary operation of multiplication.
- (iii) Give a reason why B is not a group under the binary operation of multiplication.
- (iv) Find an example to show that $f(a \times b) = f(a) \times f(b)$ is not satisfied for all $a, b \in A$.
- (b) Let *D* be the set $\{x \mid x \in \mathbb{R}, x > 0\}$.

A function $g : \mathbb{R} \to D$ is defined by $g(x) = e^x$.

- (i) Sketch the graph of y = g(x) and hence justify whether or not g is a bijection.
- (ii) Show that $g(a + b) = g(a) \times g(b)$ for all $a, b \in \mathbb{R}$.
- (iii) Given that $\{\mathbb{R}, +\}$ and $\{D, \times\}$ are both groups, explain whether or not they are isomorphic. [8]
- **3.** [Maximum mark: 15]

An Abelian group, $\{G, *\}$, has 12 different elements which are of the form $a^i * b^j$ where $i \in \{1, 2, 3, 4\}$ and $j \in \{1, 2, 3\}$. The elements *a* and *b* satisfy $a^4 = e$ and $b^3 = e$ where *e* is the identity.

- (a) State the possible orders of an element of $\{G, *\}$ and for each order give an example of an element of that order.
- Let $\{H, *\}$ be the proper subgroup of $\{G, *\}$ having the maximum possible order.
- (b) (i) State a generator for $\{H, *\}$.
 - (ii) Write down the elements of $\{H, *\}$.
 - (iii) Write down the elements of the coset of H containing a. [7]

[8]

[13]

[4]

[6]

A relation *S* is defined on \mathbb{R} by *aSb* if and only if ab > 0.

- (a) Show that *S* is
 - (i) not reflexive;
 - (ii) symmetric;
 - (iii) transitive.

A relation *R* is defined on a non-empty set *A*. *R* is symmetric and transitive but not reflexive.

- (b) Explain why there exists an element $a \in A$ that is not related to itself. [1]
- (c) Hence prove that there is at least one element of A that is not related to any other element of A.