Markscheme

November 2020

Discrete mathematics

Higher level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse suivante : https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\top \mathrm{M}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

1. the auxiliary equation is $\lambda^{2}-8 \lambda+16=0$ (or equivalent) A1
attempts to solve their quadratic equation (M1)
$\lambda=4$ A1
the general solution is of the form $u_{n}=(A+B n) 4^{n}$ (or equivalent) M1

Note: Only award $\boldsymbol{M} \mathbf{1}$ for general solutions of the form $u_{n}=(A+B n) \lambda^{n}$ (or equivalent). Award M1 for $u_{n}=(A+B n) \lambda^{n}$.
applies two (initial) conditions, eg substitutes $n=1,2$, into their u_{n} to form two equations M1
$A+B=1$ and $A+2 B=3$ (or equivalent eg $4 A+4 B=4$ and $16 A+32 B=48$) A1
attempts to solve their two simultaneous equations
$A=-1, B=2$
$u_{n}=(2 n-1) 4^{n}$ (or equivalent)
2. (a) (i) attempts to construct a graph or table to represent Dijkstra's algorithm M1

EITHER

OR

Step	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
1	∞	25	0	17	∞	∞	∞	12
2	44	25	-	17	∞	∞	33	-
3	44	25	-	-	41	∞	33	-
4	36	-	-	-	41	∞	33	-
5	36	-	-	-	40	58	-	-
6	-	-	-	-	40	57	-	-
7	-	-	-	-	-	55	-	-

a clear attempt at Step 1 (C,D,H and B considered)
Steps 2 and 3 correctly completed
Step 4 (A: $44 \rightarrow 36$) correctly completed

Steps 5 and $6(\mathrm{E}: 41 \rightarrow 40$ and $\mathrm{F}: 58 \rightarrow 57$ or $57 \rightarrow 55$ or $58 \rightarrow 55$) correctly completed
shortest time $=55$ (mins)
(ii) CHGEF A1

Note: Award A1 only if it is clear that Dijkstra's algorithm has been attempted in part (a) (i). This $\boldsymbol{A} 1$ can be awarded if the candidate attempts to use Dijkstra's algorithm but neglects to state 55 (mins).
(b) minimum travel time from C to A is reduced

CHA is now $12+t$ (mins)
CBA is still $25+11$ (mins)
so $12+t<36(t<24)$

Note: Condone $t \leq 24$.
travel time from C to F remains the same (55 mins)
CHAF is now $12+t+21$ (mins)
$12+t+21 \geq 55(t \geq 22)$
so $22 \leq t<24$
Note: Accept $t=22,23$.
3. (a) (i) the remainder is 0
(ii) $14^{16} \equiv 1(\bmod 17)($ from Fermat's little theorem)

$$
14^{2022}=14^{16 \times 126+6}
$$

Note: Award M1 for a RHS exponent consistent with the correct use of Fermat's little theorem.
$14^{2022} \equiv 14^{6}(\bmod 17)(\equiv 15(\bmod 17)) \quad \boldsymbol{A 1}$
the remainder is 15
A1
[5 marks]
(b) (i) METHOD 1
let $N=a_{n} 13^{n}+a_{n-1} 13^{n-1}+\ldots+a_{1} 13+a_{0}$
M1

Note: The above $\boldsymbol{M 1}$ is independent of the \boldsymbol{A} marks below.
$13 \equiv 1(\bmod 6)$

EITHER

$13^{x} \equiv 1(\bmod 6)($ for all $x \in \mathbb{N})$

OR

$N \equiv a_{n} 1^{n}+a_{n-1} 1^{n-1}+\ldots+a_{1} 1+a_{0}(\bmod 6)\left(N \equiv a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}(\bmod 6)\right)$

THEN

$$
\begin{array}{ll}
\text { so } N \equiv 0(\bmod 6) \text { if and only if } a_{n}+a_{n-1}+\ldots+a_{1}+a_{0} \equiv 0(\bmod 6) & \text { R1 } \\
\text { so } 6 \mid N \text { if and only if } 6 \mid\left(a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}\right) & \boldsymbol{A G}
\end{array}
$$

METHOD 2

$$
\begin{align*}
& \text { let } N=a_{n} 13^{n}+a_{n-1} 13^{n-1}+\ldots+a_{1} 13+a_{0} \tag{M1}\\
& N=\left(a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}\right) \\
& +(13-1)\left(a_{n}\left(13^{n-1}+\ldots+13^{0}\right)+a_{n-1}\left(13^{n-2}+\ldots+13^{0}\right)+\ldots+a_{1} 13^{0}\right)
\end{align*}
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for attempting to express N in the form $N=\left(a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}\right)+(13-1) M$.

$$
\begin{array}{lc}
\text { as } 6 \mid(13-1) M & \text { R1 } \\
\text { so } 6 \mid N \text { if and only if } 6 \mid\left(a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}\right) & \boldsymbol{A G}
\end{array}
$$

(ii) METHOD 1
the sum of the digits is $2 y+20$
uses $2 y+20=6 k$ (or equivalent) to attempt to find a valid value of y
$y=2,5,8,11(B)$
A1A1

Note: Award A1 for $y=2,5,8$ and $\boldsymbol{A 1}$ for $y=11(B)$.

METHOD 2

$$
\begin{aligned}
& (1 y 93 y 25)_{13}=1 \times 13^{6}+y \times 13^{5}+9 \times 13^{4}+3 \times 13^{3}+y \times 13^{2}+2 \times 13^{1}+5 \times 13^{0}(\boldsymbol{A 1}) \\
& =371462 y+5090480
\end{aligned}
$$

attempts to find a valid value of y such that
$371462 y+5090480 \equiv 0(\bmod 6)$
$y=2,5,8,11(B)$

Note: Award $\boldsymbol{A 1}$ for $y=2,5,8$ and $\boldsymbol{A 1}$ for $y=11(B)$.

4. METHOD 1

$3 x \equiv 1(\bmod 31) \Rightarrow x \equiv 21(\bmod 31)$
$x=29 a+7$ and $x=31 b+21$
uses a table of values for their two equations in an attempt to find x
$x=703$
$x \equiv 703(\bmod 899)(x=703+899 k)$

METHOD 2

$x=29 a+7$
substitutes their equation into the other congruence
$3(29 a+7) \equiv 1(\bmod 31)$
a valid attempt to solve their form of the above congruence
$a \equiv 24(\bmod 31)$
correctly substitutes $a=31 b+24$ into $x=29 a+7$
$x=29(31 b+24)+7$
$x \equiv 703(\bmod 899)(x=703+899 b)$

METHOD 3

$3 x \equiv 1(\bmod 31) \Rightarrow x \equiv 21(\bmod 31)$
$M_{1}=31$ and $M_{2}=29$
attempts to use $M_{i} x_{i} \equiv 1\left(\bmod m_{i}\right) \quad(i=1,2)$
$31 x_{1} \equiv 1(\bmod 29)$ and $29 x_{2} \equiv 1(\bmod 31)$
$x_{1} \equiv 15(\bmod 29)$ and $x_{2} \equiv 15(\bmod 31)$
attempts to use $x=a_{1} x_{1} M_{1}+a_{2} x_{2} M_{2}(\bmod M)$
$x \equiv 7 \times 15 \times 31+21 \times 29 \times 15(\bmod 899)$
$x \equiv 703(\bmod 899)(x \equiv 12390(\bmod 899))(x=703+899 k)$

METHOD 4

$x=29 k+7$ and $3 x=31 t+1$
p is a multiple of 31 and $p=29 k+7$ (1) and
q is a multiple of 29 and $3 q=31 t+1 \quad$ (2)
from (1): $p=31 x_{1}$ and $31 x_{1} \equiv 7(\bmod 29) \Rightarrow x_{1} \equiv 18(\bmod 29)$
from (2): $q=29 x_{2}$ and $3\left(29 x_{2}\right) \equiv 1(\bmod 31) \Rightarrow x_{2} \equiv 5(\bmod 31)$
$p=558$ and $q=145$
uses $x=p+q$ to obtain $x=703$
$x \equiv 703(\bmod 899)(x=703+899 b)$

METHOD 5

$3 x \equiv 1(\bmod 31) \Rightarrow x \equiv 21(\bmod 31)$
$x=29 a+7$ and $x=31 b+21$
$29 a+7=31 b+21 \Rightarrow 29 a-31 b=14$
$\operatorname{gcd}(29,31)=1$ and so $29 a-31 b=1$
a valid attempt to solve either $29 a-31 b=14$ or $29 a-31 b=1$ (eg uses the Euclidean algorithm and reverses the process)
$29 \times 210-31 \times 196=14$
$a=210($ and $b=196)$
$x \equiv 703(\bmod 899)(x \equiv 6097(\bmod 899))(x=703+899 k)$
5. (a) substitutes $v=9$ into either $e=3 v-6$ or $e \leq 3 v-6$
the maximum number of edges is $21(e \leq 21)$
(b) $\quad \kappa_{9}$ has $\left(\binom{9}{2}=\right) 36$ edges
so $e^{\prime}=36-e\left(=\binom{9}{2}-e\right)$
(c) $e^{\prime} \leq 21 \Rightarrow 36-e \leq 21$
$15 \leq e \leq 21$ (the possible values are $15,16,17,18,19,20$ and 21)
(d) recognises that $e+e^{\prime}=\frac{v(v-1)}{2}$ (or equivalent)
uses $e \leq 3 v-6$ and $e^{\prime} \leq 3 v-6$
to form $\frac{v(v-1)}{2}-(3 v-6) \leq 3 v-6$
Note: Award $\boldsymbol{A} 1$ for $\frac{v(v-1)}{2}-(3 v-6)=3 v-6$.
attempts to solve their quadratic inequality (equality)
$v^{2}-13 v+24 \leq 0 \Rightarrow 2.228 \ldots \leq v \leq 10.77 \ldots$
the maximum possible value of v is $10(v \leq 10)$ A1

