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Abstract
RSA and Diffie-Hellman Key Exchange are two widely used encryption systems in

modern technology. Although grounded in similar mathematics, they rely on fundamentally

different problems to remain secure. The goal of the investigation was to find out which of these

o A L,
§ e

two methods of encryption is better under different circumstances. e
I researched the capabilities, limitations, specialties, of each of DHKE and RSA, as well
as how each one works. I examined different journal articles, websites, and textbooks in order to
gather information on each of these encryption methods. I then used this information on the two
methods to compare the two, and find out which is stronger under what conditions. After
analysis, Lconcludec!l that RSA is more suitable for anything where a new key doesn’t need to be
created as often,such as e-mail, while DHKE is better for applications where many new keys

may need to be formed for communication between many parties, such as in online

communications and web browsing.
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Introduction to Cryptography

Cryptography has been important in communications since the times of the Romans and
the Greeks, primarily during warfare. Nowadays, cryptography plays an important role in both
war and everyday life. Technology has progressed to a state where it is now to communicate and
share information. This makes it much easier for information fall into the wrong hands such as
those of shady corporations, real life enemies, and most worrisomely, hackers and criminals.
Fortunately, along with this new technology, we have developed new cryptographic methods of

keeping this information safe.

Introduction to RSA and Diffie-Hellman

RSA and Diffie-Hellman Key Exchange are two examples of modern encryption
methods. Both RSA and Diffie-Hellman are unique encryption methods that that allow for secure

keys to be used quickly and efﬁciently.:The purpose of this essay is to familiarize the reader with

A
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each of these methods of encryption and their strengths, weaknesses, and specialties and then to

directly compare them on each of these fronts. Nl > FANIAN I :\ .
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RSA

Named after Ron Rivest, Adi Shamir, and Leonard Adleman who first introduced it in
1978, RSA is a modern cipher that has stood up against years of cryptanalysis. RSA is a public
key cipher, meaning that there are two keys each time it is used: one key known as the public key

that anyone can know and must use in order to send a message to the receiver, who is the only



one who knows the other key, the private key. In order to generate the public and private keys,

find two large prime numbers, let’s call them p and ¢. Then find the product of these two

numbers 7.
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Next, select an encryption key e such that e is @latively?riﬂr_gg}o - 1) *(q - 1). Finally, use the

Extended Euclidean algorithm to compute the decryption key d, the private key, such that

e
o
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dxd=1(mod(p-1/*(@-1) (gl
Another way to state this would be
d=e=1(mod(p - * (g ~ 1)) N
o T D
The value of d can be computed using the Extended Euclidean Algorithm. v

Now, you should have the values e, d, and n. Publish e and n, as people will need to use these to
send you messages, but keep d a secret. This is the secret key that is needed to decipher the
messages, so only you should know it. To encrypt, the sender must turn their message into a

series of integers that are each less than n. The encrypted message will be represented as



similarly sized integers. The encryption formula is as follows, where m is the block of message

and c is the block of encrypted message:

¢=m" (mod n)

To decrypt, simply use the following:

m=c? (mod n)

Because:

Cd — (me)d - med

med — mk(P' Dg-1N+1 g{feeﬁg ])(/

5
w i -
\"“, %\/'\;}; \%,““_g,. e

mk(P'l)(Q' D+1_ mk(P-l)(q- I?g;“m o ) /

. o oy

h [ [ o

~ s S EI TP N Ve . . o ) .w‘x; N

2 s e _— e R Yot L \;««\ % ‘.f.\ Wy oy

S . ”‘\. L g e \‘; ,\ o S 5 o
(Y7 Euler’s Theorem states that a®™= 1 (mod n). ¢(n) is known as Euler’s Toitent Function,
\ S

which counts the positive integers less than » which are also relatively prime to n. The only

important thing that we need to know this for, however, is that if » is\ﬁs\erﬁ‘iprime, then @(n) is

-~

equal to the product of one less than each of its factors. In other words "t ™.
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This is the case for our specific scenario, so we can further simplify
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CRIGDR ) = (9 % ) = (1% m)=m
Because of this, the message could have been encrypted with ¢ and decrypted with e just as
easily as vice-versa.

RSA gains its security from the inherently difficult problem of obtaining the
prime factorization of very large numbers which only have two prime factors. Although there is
no proof, mathematicians believe that this is an inherently difficult task for which there is no
possible shortcut. Similar to the conjecture that there is no shortcut to factoring large numbers,
RSA has never been mathematically proven to be secure. Although many years’ worth of
cryptanalysis has not been able to prove or disprove the security of RSA mathematically, the lack

of a solution over these many years of cryptanalysis has proved it empirically (Shneier 281).

More about RSA

\ e
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RSA Speedup Using the Chinese Remamder Theorem Lo b e o
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Many Crypto 11brar1es use a version of a formula based upon Fermat s Little Theorem
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and the Chmese Remamder Theorem (CRT) m order to greatly increase the speed of decryptlon.

The followmg values can be computed before receiving the encrypted message and are used in

encryptiOH;
‘;\’\; A i: o |
y = d mod (q - l) - a\jkghk_, 2,5
i ‘{\7 e - V
z=¢'modp (using the extended euclidean algorithm) e - i
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Then after receiving the encrypted message ¢, you can carry out the rest of the formula:

m; = ¢* mod p

.

m; = ¢’ mod ¢ cJ

h=z(m; - m; + p) mod p

v

m=m; + hg

with m being your final deciphered message. This method works to speed up the process of

decryption using the following equations:

sy R Y &8 A ’“‘%i £ VM LS
;‘; AN i g

dmod (p-1)

m; = (¢? mod #) mod p = (¢ mod p) mod p AT o

The same is true replacing m; and p with m; and g respectively. This equatlon can be reached
P %}K Dhoad 7
from our original definition of m; using Fermat’s Little Theorem. The step between these two

expressions is also what saves most of the computational time when using this algorithm.

Computing the right side of this equation is much easier than computing the middle because d <o e ©

mod (- 1) 1s so much smaller than d, fewer steps have to be taken in the process of modular fwe

- j—

e

exponentiation. It is also worth noting that ¢ mod nis much less than [ Wthh helps speed up the
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RSA can also be used to create digital signatures. To do this,encrypts m with their own

private d. The receiver can decrypt this with the sender’s public e. If the signature, when

: : : : ),
decrpyted, is the same as the message, then the signature is authentic (Delfs, Knebl 45).  /
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Vulnerabilities of RSA P e ?vmw
If two separate people have different larg’é 'semiprim¢ ns that share one factor, it is trivial

to find the prime factorization of both ns by simply ﬁndlng the greatest common factor of the

“two. It is possible to compare one large semiprime to many at the same time this way by

comparing it to the product of all of those large semiprimes. Another attack, called a timing
attack, finds out the message after many decipherings by how long it takes the computer to

decipher each ciphertext (Paar, Pelzl 195). This can be easily thwarted by computing (#c)? mod ; RS

LAl
n instead of just ¢? mod n. This will leave you with rm mod n, from which you can find m by ; Ti,.ﬂi;; -
R )

)

multiplying by the inverse of ¥ mod n. Because RSA is also a deterministic cipher, i.e. it has no §
random component, a chosen plaintext attack is also possible. This method works by guessing
possible plaintexts, and then enciphering them, and then comparing them to the ciphertext.
Vulnerabilities to attacks such as chosen plaintext attacks and adaptive chosen ciphertext attacks
can be protected against using padding (Delfs, Knebl 47). This is an extra step to encryption
compared to pure RSA that adds uniformity and randomness to the cipher. It incorporates
random numbers and hash functions to help do this. One strong padding method is Optimal
Asymmetric Encryption Padding (RSA Laboratories). Pure RSA is very slow. Practically, users
only use RSA to send the key to a more secure systematic cipher, such as Advanced Encryption

Standard (AES). This allows for a much faster encryption and decryption process (Paar, Pelzl

174).



Diffie-Hellman Key Exchange

In 1976 the Diffie-Hellman Key Exchange system was published as the first public key
encryption system. Unlike RSA, DHKE can only be used to securely create keys to symmetric
ciphers and not to send actual messages. The usefulness of DHKE is that each participant ends
up with a secret key which they both know, but nobody else knows. A good analogy has to do
with different colors of paint. For this analogy pretend that it is very difficult to separate the
colors of paint. Alice and Bob want to develop a secret color of paint that only they know, but
any paint that sent can be intercepted by Eve, who can discover the color of the paint. Alice and
Bob each start out with one quart of the same color paint, say yellow for instance. Then Alice
and Bob each add of secret color paint to the yellow paint so that they each have a 2 quart
mixture. The color of this secret paint doesn’t matter, only that each party remembers what color
it is until the end of the process, and keep the color a secret. Alice and Bob each send their 2
quart mixture to each other. Then, they add one more quart of their secret color paint to the
mixture they have received, so that they each then have a 3 quart mixture. Eve knows that they
each started with yellow paint because that was public, but she is unable to separate the secret
paint from the yellow paint. After this, Bob and Alice each have a secret color paint that consists
of one quart yellow paint, one quart of Bob’s secret color paint, and one quart of Alice’s secret
color paint, thus they both have 3 quarts of a new secret color that they, and only they, know.
However, having never known the secret color of the other party, neither Alice nor Bob could
have predicted what the resulting secret color would be. DHKE works similarly to this example,
but instead of a public color, there is a public modulus » and a public base e, and instead of

adding a secret color paint Bob and Alice each multiply by a secret integer mod fz(Vmck)
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Imagine that you are Bob. In order to create a secret key that only you and Alice know,

you first must select a large prime # and an integer e so that 1 <e <n and e is a primitive root

e

mod 7. For e to be a primitive root mod » means that for every integer a that is relatively prime

£
i

to # there exists a k so that e* = @ mod . In this case k is known as the discrete logarithm for a to

the base e mod n. After you, Bob, hé;wé”sxent these public numbers to Alice, you and she must
randomly choose an integer b and a respeéijvely, and multiply them by e mod # to get the
5,

following .

e, a
R Y

B=¢’modn and

A=¢e"modn

After this you and Alice each send each other B and 4. Then multiply again to get the

following

k=A% mod n and

k’= B mod n
k and k’ are equal, because both are equal to ¢“® mod n. Alice and Bob can now use £,

some portion of %, or even a cryptographic hash of k& as the key to a symmetric cipher, most

likely AES. However, k could not have been known by either party beforehand (Paar, Pelzl 206).

10
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The reason that Diffie-Hellnan is secure is because of the inherent difficulty of finding

discrete logarithms modulo n. In other words it is very difficult to find 4 given e and n and B and

B= e‘[; modn glventhatn is’»‘;ufﬁciently large. It is recommended that that » be around 2048 bits.
Note that there is no size limit to @ and 5; however they need to be at least as big as log, ». Itis
also recommended that the smallest prime factor of # - 1 be at least 256 bits in order to prevent a
Pohlig-Hellman attack on the discrete log. Similar to the prime factorization problem, the
discrete logarithm problem is not mathematically proven to be difficult, but so far it remains

infeasible to solve for sufficiently large values of n (Paar, Pelzl 216).

Problems with DHKE

Even though this key exchange by Diffie-Hellman is supposed to be secure, the fact that
there is a key exchange at all still leaves vulnerabilities. It is difficult for an eavesdropper to find
Alice and Bob’s private key if they can’t change the intercepted messages. However, if an
eavesdropper had the ability to create and delete messages (an assumption which relies on Bob
and Alice not having secure digital signatures) then it is fairly easy for Eve, our eavesdropper, to
know the secret key. When Eve modifies messages this way it is known as a “man in the middle”
attack. Essentially Eve can replace the B with her own B’ and A4 with her own 4. This would
allow her to cause Alice and Bob to make encryption keys that correspond to her rather than with
each other. This requires a lot of subsequent interception and replacement on Eve’s part
however, so that Alice and Bob don’t realize that they actually have 2 different secret keys. One
way to get around this is to instead modify the messages so that Alice and Bob end up with a
very weak or known key. For instance, Eve can create a weak key if she replaces 4 and B with

any number of the form £~V where x > 1, because this value equals one mod . This would

cause the resulting secret key to be 1 for both Alice and Bob. T}?s would not work if Alice and

o 11



Bob were real people, because they would almost surely notice this difference. Realistically,
though, Alice and Bob are actually probably just Alice’s and Bob’s computers, which might not

be programmed to recognize this form of attack (Raymond, Stiglic).

Pohlig-Hellman Attack
Other attacks try to solve the discrete logarithm problem. The discrete logarithm problem
can be solved relatively easily with the Pohlig-Hellman attack providing that the prime factors of

n - 1 (one less than the prime modulus used for DHKE) are all fairly small. This would allow an

,«; \‘/ :1,, g, r')“ i f

attacker to break DHKE. Given € = g" mod p, and the 1nteger é, & and p\(a prnﬁe) this formula

k1 kz,/ IR ki
*pz i*p3 e Pi

A o

will solve for x. First, you must break up (p 1) into its prime factors p;
Next we can find x modulo each of these p. To do this we will express x mod pn as agpn + Xp. We

can find this by using the following:

&P~ 1Pn — X0 - Db (1164 1y

elP-1ypn g(p - l)mlg(p - Dpnxn (mod p) ek 6 o
P~ = o -pmxn (04 p)  (via Euler’s theorem)
At this point we can just guess and check every possible value of x; through x;. Once you have

all X, you can find x using this generalization of th¢ Chinese Remainder Theorem:™
| Oy KL CNe

“For integers a; through a; and relatively prime integers q; through q; there exists an x
such that

x = a; mod q;

x=aymodq,....

X = a; mod q;

12



all solutions x are congruent modulo the product of all g,
the following can be used to find x mod q
x = (a;bi1g/q; + azbyq/qz + ... + aibig/q;) mod q

where b, is defined as Ry

ot
e
t

by ¢/qn =1 (mod q)”

——
P

The fact that this algorithm requires one to iterate through all possible values of X, is the reason
that all factors of (p - 1) must be small. As long as all p, are small, then iterating through all
possible X, should not take very long. If there were some large py, and thus many possible values
of x,, however, computation of this algorithm would be infeasible. Primes of the following form
are safe from this attack:

2 tr*tzjtgj WO

where all t are large primes (Paar, Pelzl 222).

Probabilistic Prime Testing

For both RSA and DHKE, having good random numbers and random primes is
important. The secret numbers that only one person knows in DHKE, each party’s secret
multiplier, should be chosen randomly and not reused in order to remain secure. RSA usually
requires another layer of security in the form of padding algorithms. These algorithms use hash
functions and random number generation in order to make RSA stronger against certain kinds of
attacks, such as chosen plaintext attacks. Also, it is very important to find the prime numbers p
and ¢ randomly, so that they are hard to guess. In fact, random number generation is important at
every step of the encryption process where one has to choose new numbers, as they need to be

difficult to guess. For example, even if two parties exchange a symmetric cipher key securely

13



using RSA, if the key is not hard to guess, then an attacker could guess it and bypass the whole
RSA part altogether. Finding random primes is usually done in a guess and check method, by
picking random numbers of approximately the correct size as needed and then conducting

primality tests on them.

Probabilistic primality tests are actually just compositeness tests. If the test says a number
is prime, there is always a small chance, however, that it really is composite. The test is
repeatable for different randomly chosen “witness” integers, and for each repetition if the
number is composite, there is a chance (¥ when using the Miller-Rabin test) that it will report
the number as composite. Otherwise, it will make no report. If each repetition has a % chance to
report a composite if it is a composite, then the probability that the algorithm comprising of k
repetitions of this test for different random witness numbers makes an error (i.e. doesn’t report
the number as a composite when it really is) is 4%, One example of a strong probabilistic
primality test is the Miller-Rabin test, which is computed as follows: Given a number #, choose a
random witness integer 1 <a <n - 1. Also let s and d satisfy 2°d = n - 1 where d is odd. For each

randomly chosen g, if n is composite, there is a % chance that it will return that » is composite. It

will return that » is composite if N |

W

-y
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a’ #1(modn) and
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a%:»-r)d # -1 (mod n) forall 0<r<s-1
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This algorithm is then repeated until it returns composite or the desired number of repetitions is

reached, at which point » is considered prime. It is advisable to repeat this until the error

gl s -80 . . . . . <
probability is below 2, which in this case is 40 tlmss (Paar, Pelzl 190). Ny ¢y ) gk PR TN
e ey Ty PN L 2
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Comparison of RSA and DHKE : Ui o7 “a R

Overall, RSA and DHKE are very similar. Both cryptographic methods rely on very
difficult modular arithmetic problems. Despite this, they do have significant differences and are
each better for different tasks. In terms of raw security, RSA and DHKE are somewhat similar.
Both have a recommended key size of at least 2048 bits and are both somewhat vulnerable to a
variety of similar attacks such as timing attacks and attacks based on poor random number
generators. Commonly, both RSA and DHKE are used to create or share keys in order to use
with a stronger symmetric cipher, such as AES. However, there are many differences between

the two.

The biggest weakness that DHKE has over RSA is that you actually have to exchange
keys. This gives attackers the opportunity to change the keys as they are being set up.

RSA is very easy to authenticate, however it is not as easy to authenticate the exchange
of Diffie-Hellman keys. Security-wise, RSA seems superior to DHKE assuming that for each
you have sufficient padding, random number generation, blinding to timing attacks, primes, etc.
to supplement the basic algorithm. For DHKE, the primes don’t need to be as strong. One only
needs to be sure that the primes are strong against several fairly common discrete logarithm
algorithms such as the Pohlig-Hellman algorithm. A good random number generator is ;

recommended for generating secret exponents so that there is little correlation, but these

15



exponents are sometimes even safely reusable. With RSA however, it is extremely important to
find primes p and g that fit certain criteria and are not too common. If an attacker guesses just
one of these prime factors, then they have complete access to all messages you send until you get
a new key. With RSA, usually you keep the same key for longer than with DHKE, with which
the same base, prime, and secret exponents are never used again. Essentially, RSA seems
stronger to a person who has all the resources and ability to ensure that the keys which they have
chosen are secure, but requires more effort in order to do so. In the case that strong keys are not
available for some reason, DHKE is stronger.

RSA has the advantage of utility over DHKE. DHKE can only be used for creating secret
keys, and for a few other similar things such as password authenticated key agreements. RSA is
useful as a public key cipher on its own in addition to use in tandem to symmetric ciphers and in
digital signatures.

Computationally, both RSA and DHKE are very similar at their core. However, RSA
requires a much longer key generation time. For things like email where new keys don’t need to
be created all the time for many different places, RSA is generally better. However, for things
like online communications (i.e. web browsing), where one might go to many different websites
and need new keys to communicate with multiple different parties, DHKE is generally more -

practical (Wiener). 7

The Current Value of RSA and DHKE
RSA and Diffie Hellman both seem to be on their way out. With modern computers
getting stronger and stronger, it is probable that within the next ten or so years both methods will

require 4096 bit keys in order to be secure. It is also quite possible that either or both of these

16



ciphers could even be cracked by that time. Currently the NSA is encouraging a switch from
these cryptosystems to elliptic-curve cryptography (ECC), which is more secure and faster than
both RSA and DHKE, as well as having a smaller secure key size of only around 128 bits (NSA).

Despite this, RSA and DHKE still have a large role in contemporary security systems. /
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