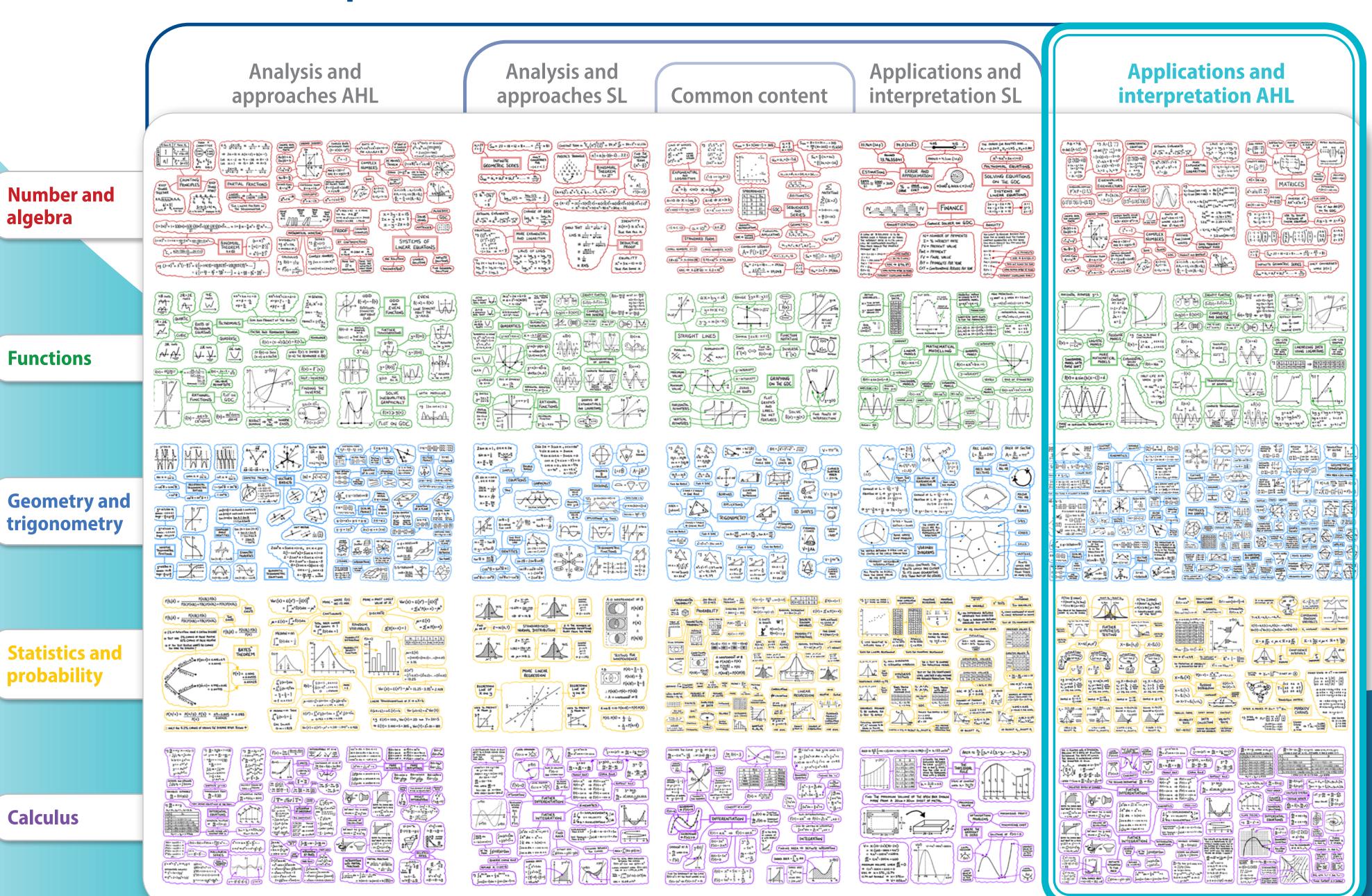
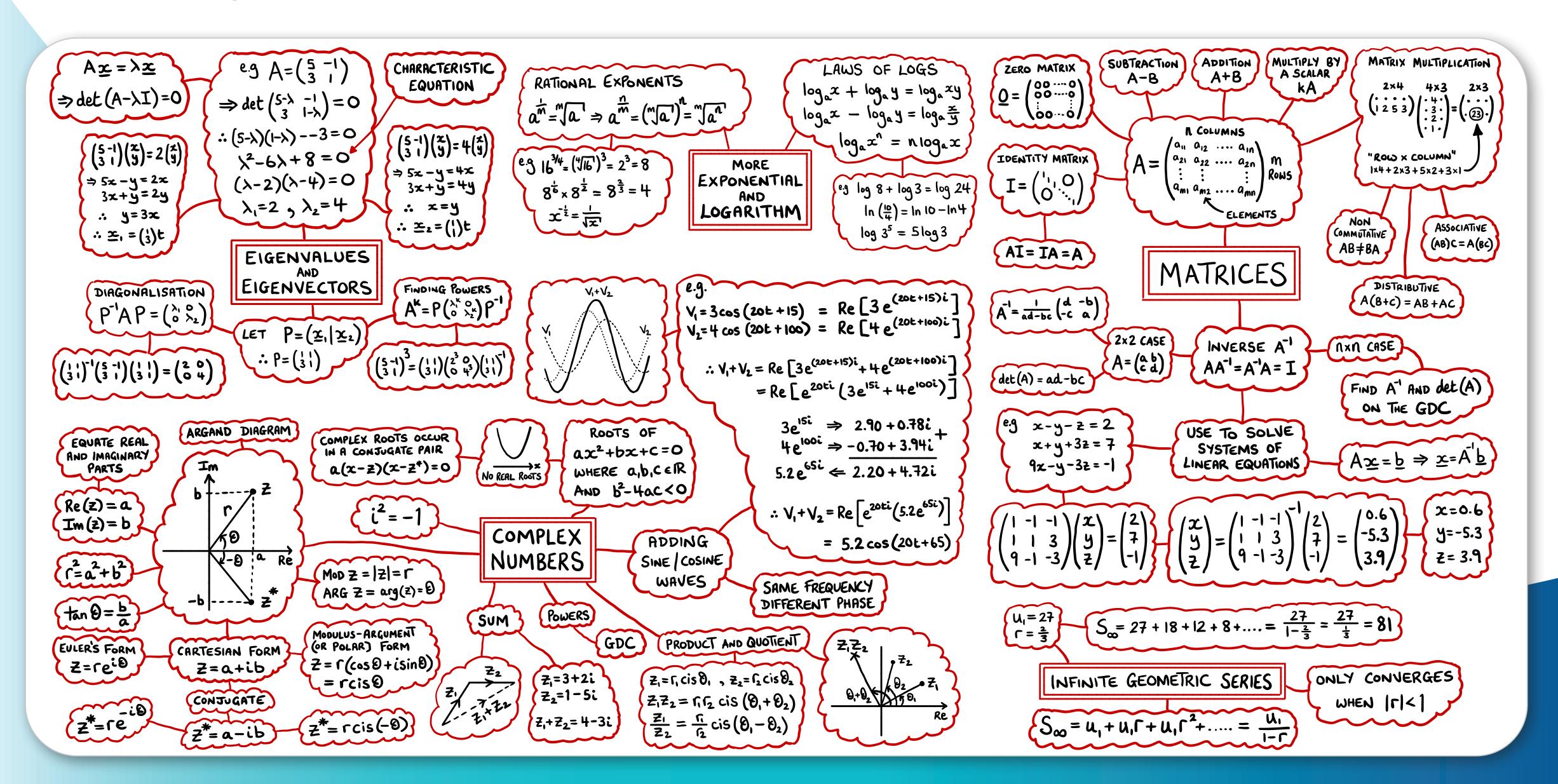


Mathematics mind map Applications and interpretation AHL

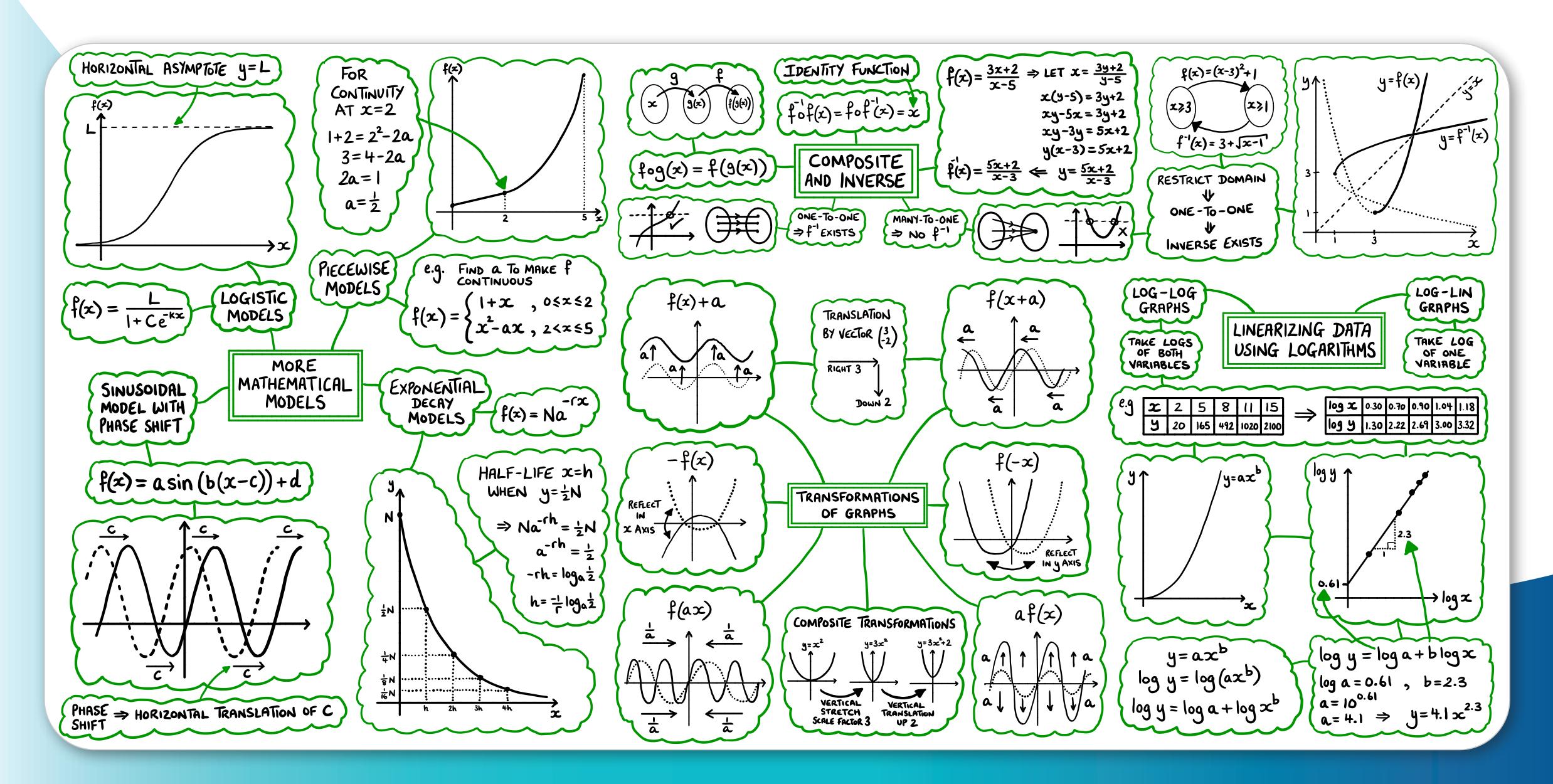
Mathematics mind map



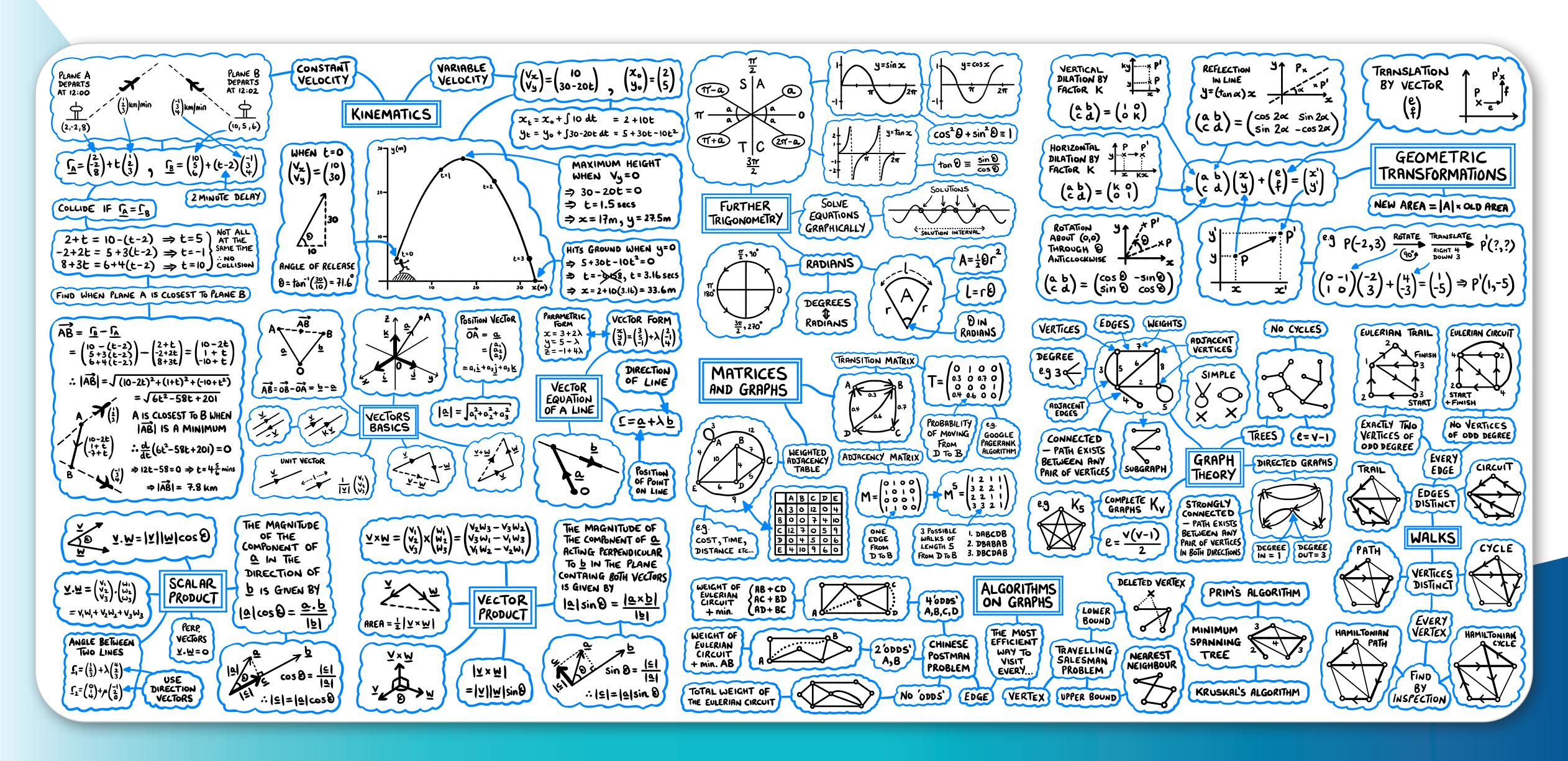
Number and algebra



Functions

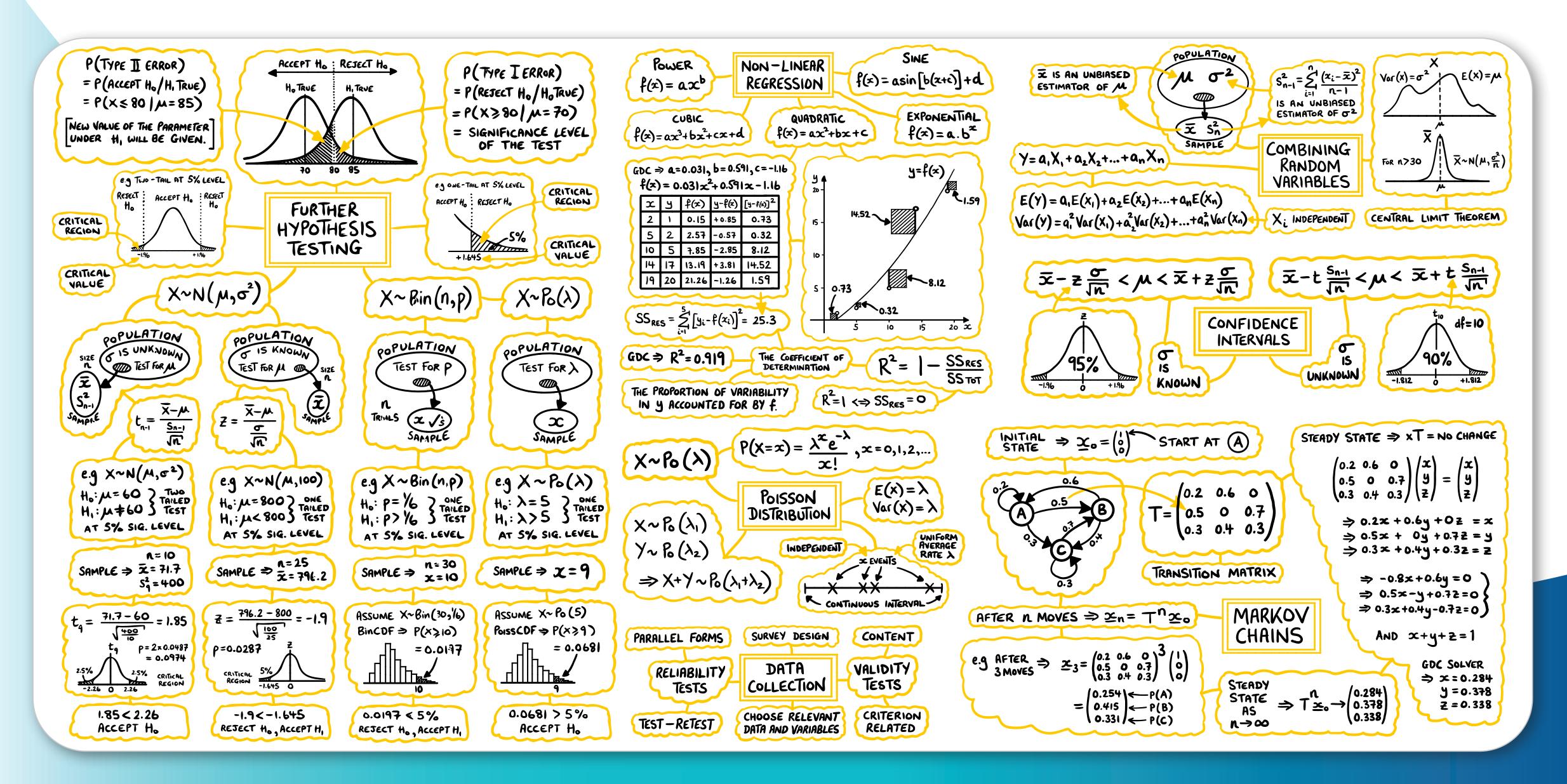


Geometry and trigonometry



International Baccalaureate Baccalauréat International Bachillerato Internacional

Statistics and probability

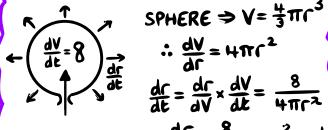


Applications and interpretation AHL

nternational Baccalaureate Baccalauréat International

AIR IS PUMPED INTO A SPHERICAL BALLOON AT A RATE OF 8 cm3/sec. DETERMINE THE RATE AT WHICH THE RADIUS IS INCREASING WHEN

Calculus



POINT OF INFLEXION IS WHERE THE LOCAL LOCAL CONCAVITY CHANGES MAXIMUM f"(x) <0

f"(x)≥0 CONCAVE

f"(x)>0

 $y=x^2\sin x$ $\frac{dy}{dz} = x^2 \cos z + 2z \sin x$ $y = \sin(x^2) \Rightarrow \frac{dy}{dx} = 2x \cdot \cos(x^2)$

y=uv 姚= u k + v k

PRODUCT RULE

y=g(u), u=f(x) $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dx}{dx}$

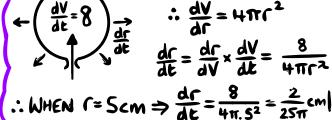
<u>dy</u> =

$\frac{dy}{dx} = x + y \cdot \text{WHEN } x = 0, y = 1$ USING h=0.2 ESTIMATE Y WHEN x=1 n Xn Yn ⇒ STORE 0.2 → h, USE ANS ON GDC 0 0 = 1 1 | 0.2 | = ANS + h(0 + ANS) = 1.22 | 0.4 | = ANS + h(0.2 + ANS) = 1.48|3|0.6| = ANS + h(0.4 + ANS) = 1.856|4|0.8| = ANS + h(0.6 + ANS) = 2.347 $5 \mid 1 \mid = ANS + h(0.8 + ANS) = 2.977$

 $\frac{dx}{dt} = 3x - y, \frac{dy}{dt} = x + y + t$. WHEN t = 0, x = 2, y = 1USING A STEP OF h= +, ESTIMATE = AND & WHEN t=1 t $0 x_0=2$ 0.25 $x_1 = 2 + (3 \times 2 - 1)(\frac{1}{4}) = 3.25$ $y_1 = 1 + (2 + 1 + 0)(\frac{1}{4}) = 1.75$ 0.5 $x_2 = 3.25 + (3 \times 3.25 - 1.75)(\frac{1}{4}) = 5.25$ $y_2 = 1.75 + (3.25 + 1.75 + 0.25)(\frac{1}{4}) = 3.063$ 0.75 $x_3 = 5.25 + (3 \times 5.25 - 3.063)(\frac{1}{4}) = 8.422$ $y_3 = 3.063 + (5.25 + 3.063 + 0.5)(4) = 5.266$ 1 $x_4 = 8.422 + (3 \times 8.422 - 5.266)(4) = 13.422$ $y_4 = 5.266 + (8.422 + 5.266 + 0.75)(4) = 8.875$

: WHEN t=1 => x=13.422 , y= 8.875

THE DIAMETER IS 10cm. SPHERE > V= \frac{4}{3}TTC3



RELATED RATES OF CHANGE

f"(x)<0 CONCAVITY THE SECOND DERIVATIVE $\frac{d^2y}{dx^2}$ or f(x)

CONCAVE

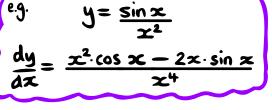
 $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

$$f(x) = e^x$$
 $\Rightarrow f'(x) = e^x$
 $f(x) = \ln x$ $\Rightarrow f'(x) = \frac{1}{x}$
 $f(x) = \sin x$ $\Rightarrow f'(x) = \cos x$

 $f(x) = \tan x \implies f'(x) = \frac{1}{\cos^2 x}$

 $f(x) = \cos x \Rightarrow f'(x) = -\sin x$

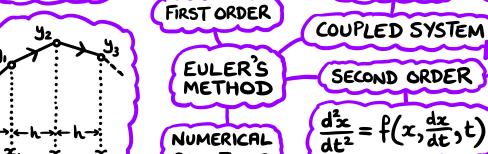
CHAIN RULE



QUOTIENT RULE

 $y_{n+1} = y_n + hf(x_n, y_n) \left\{ \frac{dy}{dx} = f(x, y) \right\}$ $x_{n+1} = x_n + h$

 $x_{s=1}$, $y_{s}=2.977$

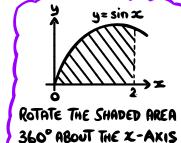


SOLUTIONS

LET $y = \frac{dx}{dt} \Rightarrow \frac{dy}{dt} = \frac{d^2x}{dt^2}$ Now Solve $\begin{cases} \frac{dx}{dt} = y \end{cases}$ $\begin{cases} \frac{dy}{dt} = f(x,y,t) \end{cases}$

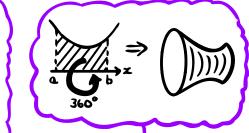
 $\widehat{x}_{n+1} = x_n + f_1(x_n, y_n, t_n) h$

 $y_{n+1} = y_n + f_2(x_n, y_n, t_n) h$



 $\therefore V = \pi \int_0^2 \sin^2 x \, dx$

 $= 3.74 \text{ units}^3$



360 ABOUT THE X-AXIS

VOLUME = $\int_a^b \pi y^2 dx$

 $\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$ KINEMATICS

$$\int e^{x} dx = e^{x} + c$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

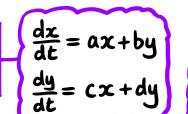
FURTHER

DIFFERENTIATION

S= DISPLACEMENTA fat V = VELOCITY de Ga = ACCELERATION Dodt

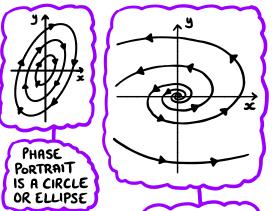


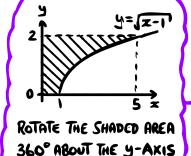
SLOPE FIELDS DIFFERENTIAL EQUATIONS e.g $\frac{dy}{dx} = y^2 - x$

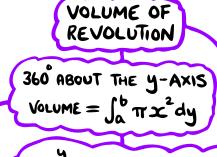


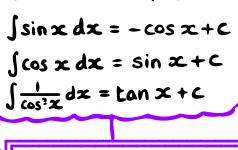
 $\frac{dx}{dt} = f_i(x,y,t)$

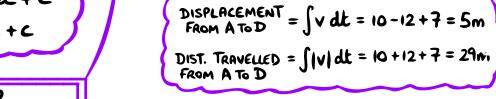
 $\frac{dy}{dt} = f_2(x,y,t)$

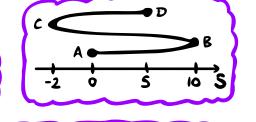






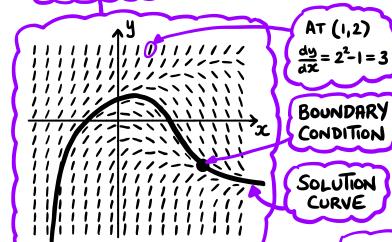






THE GROWTH OF AN ALGAE G AT

TIME & IS PROPORTIONAL TO JG.

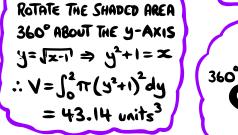


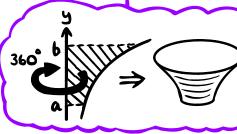
 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ ⇒ ×=A×

FIND THE EIGENVALUES

of $A \Rightarrow \lambda_1, \lambda_2$

PHASE PORTRAIT IS **IMAGINARY** A, AND Az A SPIRAL





FURTHER INTEGRATION

DIFFERENTIAL EQUATIONS

VARIABLES SEPARABLE dy = f(x)9(y)

SEPARATE AND INTEGRATE

 $\int \frac{1}{3(y)} dy = \int f(x) dx$

SPEED = IVI

INITIALLY ALGAE COVERS 9m2 OF THE SURFACE OF A POND AND + DAYS LATER THIS INCREASES TO 25m2. WHAT WILL THE AREA OF ALGAE BE AFTER I WEEK? dG=KJG' ⇒ JtodG=JKdt

 $\begin{vmatrix} 1-\lambda & 2 \\ 3 & 2-\lambda \end{vmatrix} = 0$ $\lambda_2 = -1 \Rightarrow \mathcal{L}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\lambda^2 - 3\lambda - 4 = 0$ $(\lambda-4)(\lambda+1)=0$ DIFFERENT SIGNS ⇒ Solutions Move AWAY FROM ORIGIN

ż,

 $\frac{dx}{dt} = x + 2y, \frac{dy}{dt} = 3x + 2y$ $\Rightarrow (3^{2}) = (3^{2})(3^{2})$ EIGENVECTORS

 $\lambda_1 = 4, \lambda_2 = -1$

REAL PART REAL PART OF BOTH λ , AND λ_2 IS — OF BOTH X, AND >2 IS +

COMPLEX λ , AND λ_2

SOLUTIONS
MOVE
AWAY
FROM
ORIGIN

REAL WITH $\lambda_1 = +$ AND $\lambda_2 = -$

 $\int_0^3 x^2 - 3x \, dx$ $= \left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_0^3$ $= (9 - \frac{27}{2}) - (0)$ $= -4 \frac{1}{2}$

 $= 8\frac{2}{3}$

 $\int_3^5 x^2 - 3x \, dx$

 $= \left(\frac{1}{3}x^3 - \frac{3}{2}x^2\right)_3^5$

 $= \left(\frac{125}{3} - \frac{75}{2}\right) - \left(9 - \frac{27}{2}\right)$

y=x2-3x1 3 5 x TOTAL SHADED AREA

AREA $\int_{\Delta}^{b} g'(x) dx = g(b) - g(a)$ $=4\frac{1}{2}+8\frac{2}{3}=13\frac{1}{6} \text{ units}^2$

REPLACE DEFINITE $x \rightarrow ax+b$ INTEGRATION TO FIND

REVERSE

CHAIN

 $\int 2x(x^2+1)^4 dx$ $=\frac{1}{5}(x^2+1)^5+c$

 $\int e^{3x+2} dx = \frac{1}{3}e^{3x+2} + c$ $\int \cos(2x-1) dx = \frac{1}{2} \sin(2x-1) + C$

OF THE $\int g'(x)f(g(x))dx$

MY = 34 AND y=2 WHEN X=0 $\Rightarrow \int \frac{1}{2} dy = \int 3 dx$

 $\Rightarrow y = e^{3x+c} = e^{3x}e^{c} = Ae^{3x}$ $(0,2) \Rightarrow 2 = Ae^{3(0)} \Rightarrow A = 2$ $\therefore y = 2e^{3x}$

 $\therefore 2G^{\frac{1}{2}} = kt + c$ t=0,G=9 => c=6 $\therefore 2G^{1/2} = kt + 6$ t=4,G=25 ⇒ k=1 $\therefore G = \left(\frac{1+6}{2}\right)^2$ $t=7 \Rightarrow G=\left(\frac{7+6}{2}\right)^2=42.25m^2$

Phase Portrait is a Saddle