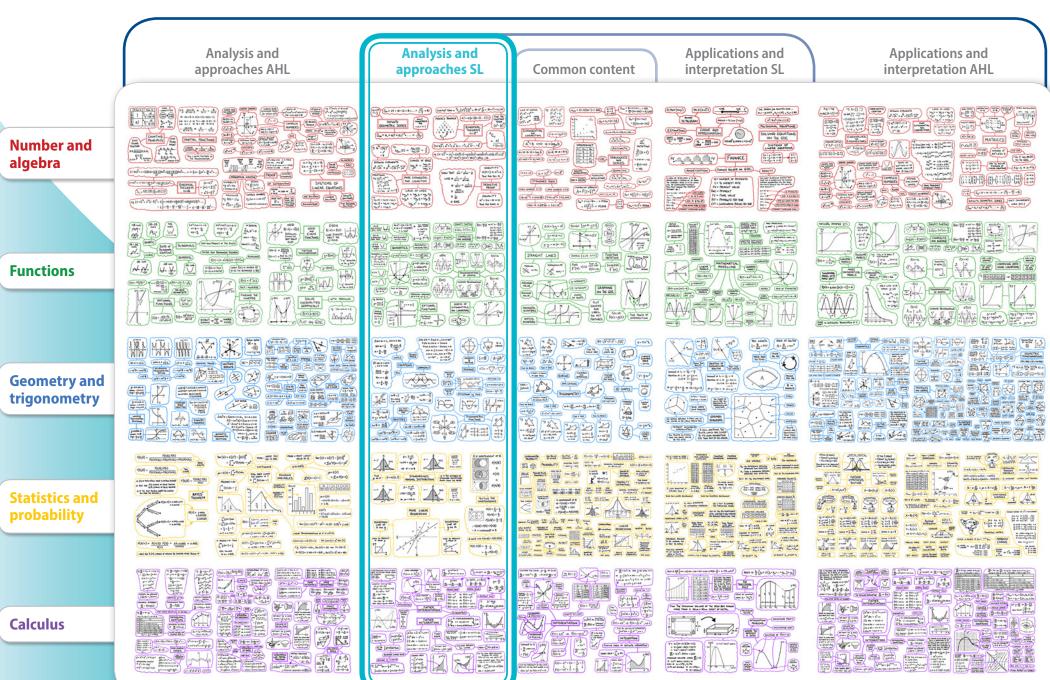


Mathematics mind map Analysis and approaches SL

MEDIAN = M

Mathematics mind map



Number and algebra

$$S_{\omega} = 27 + 18 + 12 + 8 + \dots = \frac{27}{1 - \frac{2}{3}} = 81$$

Infinite GEOMETRIC SERIES

$$S_{\infty} = u_1 + u_1 \Gamma + u_1 \Gamma^2 + \dots = \frac{u_1}{1-\Gamma}$$

$$\begin{pmatrix}
eg. & |b|^{3/4} = (4/16)^{3} \\
& = 2^{3} \\
& = 8
\end{pmatrix}
\begin{pmatrix}
e.g. & |\log_{25} 125 = \frac{\log_{5} 125}{\log_{5} 25} = \frac{3}{2}$$

RATIONAL EXPONENTS

$$a^{\frac{1}{m}} = \sqrt[m]{a} \Rightarrow a^{\frac{n}{m}} = (\sqrt[m]{a})^n = \sqrt[m]{a^n}$$

CHANGE OF BASE

$$\log_b a = \frac{\log_c a}{\log_c b}$$

EQUATIONS

e.g
$$\left(\frac{1}{3}\right)^{x} = 9^{x+1}$$

 $\left(3^{-1}\right)^{x} = \left(3^{2}\right)^{x+1}$
 $3^{-x} = 3^{2x+2}$
 $-x = 2x+2$
 $-2 = 3x \implies x = \frac{-2}{3}$

MORE EXPONENTIAL
AND LOGARITHM

e.g. $\log_3 \frac{\log}{4} = \log_3 8 + \log_3 8$ $\log_3 \frac{\log}{4} = \log_3 10 - \log_3 4$ $\log_4 3^5 = 5 \log_4 3$

LAWS OF LOGS
$$\log_{\alpha} x + \log_{\alpha} y = \log_{\alpha} xy$$

$$\log_{\alpha} x - \log_{\alpha} y = \log_{\alpha} \frac{x}{y}$$

$$\log_{\alpha} x^{n} = n \log_{\alpha} x$$

CONSTANT TERM =
$${}^{9}C_{3}(x^{2})^{3}(\frac{-3}{x})^{6} = 84 \times \frac{3^{6}}{x^{6}} = 84 \times 3^{6} = 61,236$$

PASCAL'S TRIANGLE

1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

BINOMIAL THEOREM neZ+

n! = n(n-1)(n-2)....3.2.1

 $\begin{cases} = \frac{c_i(v-c_j)}{v_j} \\ v_j \end{cases}$

FIND THE

CONSTANT

TERM

 $\left(x^2 - \frac{3}{x}\right)$

eg.
$$(x-2)^5 = (x)^5 + 5(x)^4 (-2)^4 + 10(x)^3 (-2)^2 + 10(x)^2 (-2)^3 + 5(x)^4 (-2)^5$$

= $x^5 - 10x^4 + 40x^3 - 80x^2 + 80x - 32$

SHOW THAT $\frac{1}{m+1} + \frac{1}{m^2+m} = \frac{1}{m}$ $LHS \equiv \frac{1}{m+1} + \frac{1}{m^2+m}$ $\equiv \frac{1}{m+1} + \frac{1}{m(m+1)}$ $\equiv \frac{m+1}{m(m+1)}$ $\equiv \frac{1}{m}$ $\equiv RHS$

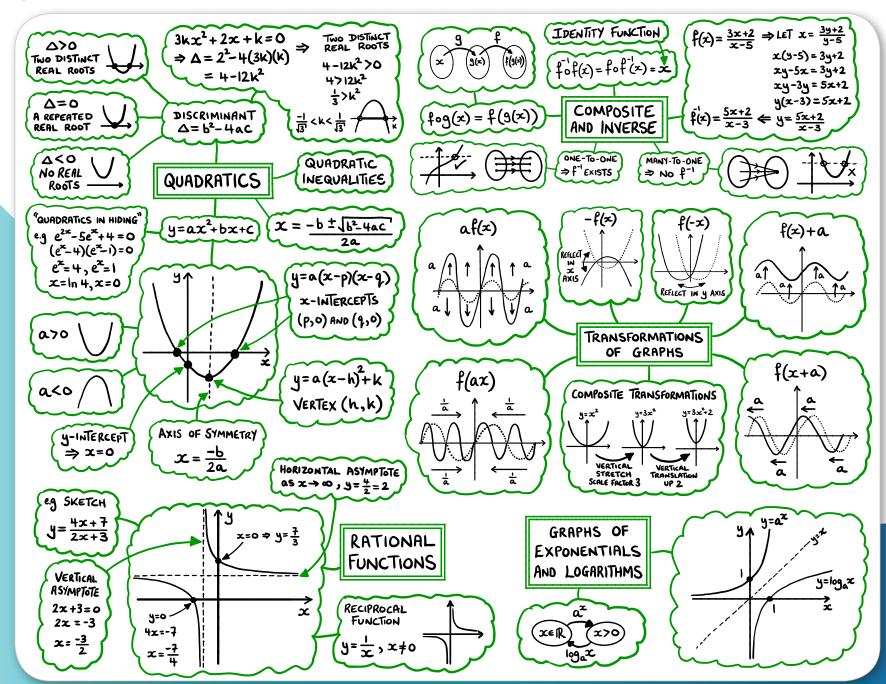
(a+b) = a + 10, a + 10 + ... + 10, a - 16 + ... + b

IDENTITY $x(x+1) \equiv x^2 + x$ True for ALL x

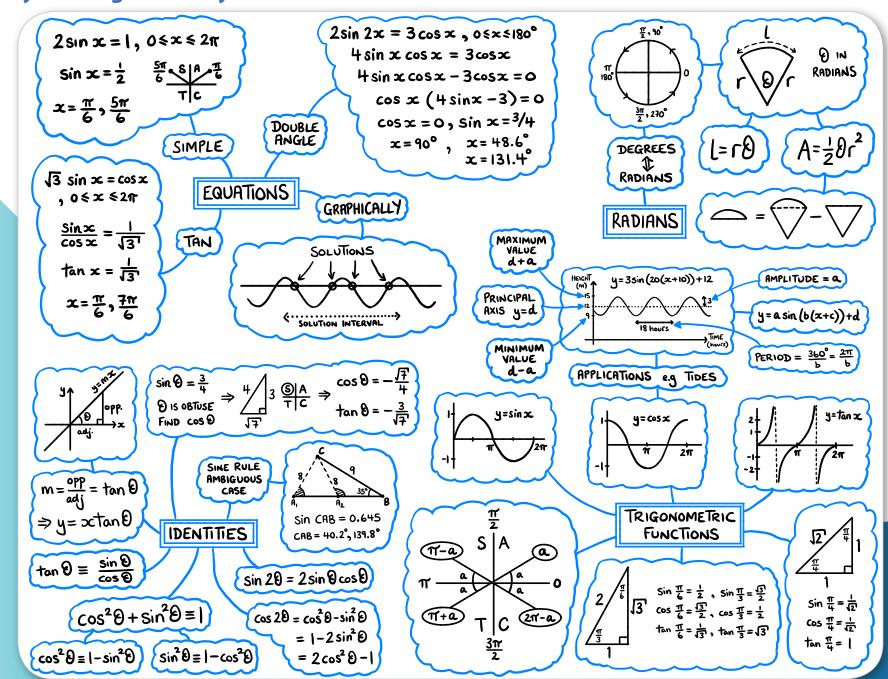
DEDUCTIVE PROOF

EQUALITY $x^2 + 3x - 10 = 0$ TRUE FOR SOME x

Functions

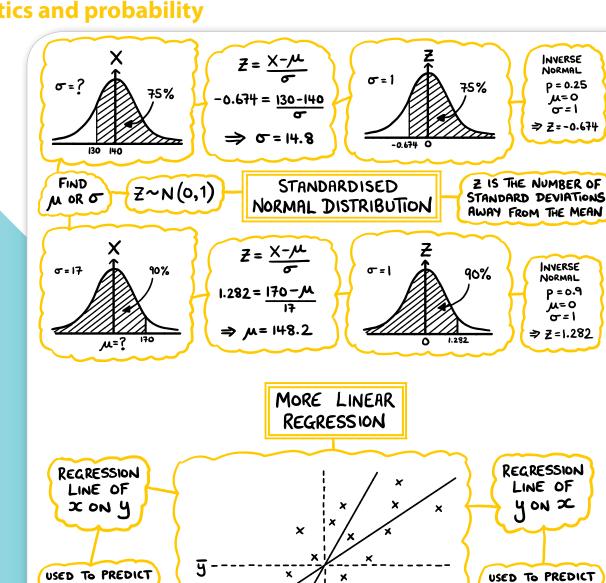


Geometry and trigonometry

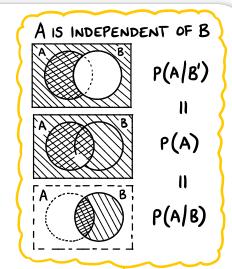


Statistics and probability

X FROM Y



 $\overline{\mathbf{x}}$



INVERSE NORMAL

p = 0.25

'm=0 σ=1 ⇒ Z=-0.674

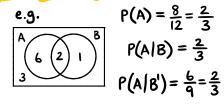
INVERSE NORMAL

p = 0.9 M=0 σ=1

⇒ Z=1.282

y From &

TESTING FOR INDEPENDENCE



- P(A|B')=P(A)=P(A|B)
- : A IS INDEPENDENT OF B

$$P(A).P(B) = \frac{2}{3} \cdot \frac{1}{4}$$
$$= \frac{2}{12} = P(A \cap B)$$

A IND. B \iff P(AnB) = P(A).P(B)

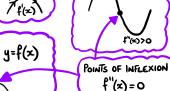
Analysis and approaches SL

Calculus

A RECTANGULAR FIELD IS BUILT NEXT TO A RIVER USING 120M OF FENCING. FIND THE MAX. AREA.

LENGTH = 2x + y = 120 $\Rightarrow y = 120 - 2x$ AREA = xy = x(120 - 2x)A = $120x - 2x^2$ $\frac{dA}{dx} = 120 - 4x$

MAX. WHEN $\frac{dA}{dx} = 0$ $4x = 120 \implies x = 30 \text{ m}$ MAX. AREA = $30 \times 60 = 1800 \text{ m}^2$ f''(x)<0 \Rightarrow \uparrow f'(x)



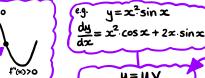
LOCAL MINIMUM

f(x)>0 > -x+

AND CHANGES SIGN

THE SECOND DERIVATIVE

 $\frac{d^2y}{dx^2}$ or f(x)



y = UV $\frac{dy}{dx} = U \frac{dV}{dx} + V \frac{du}{dx}$ (Product Rule)

 $y = \sin(x^2) \Rightarrow \frac{dy}{dx} = 2x \cdot \sin(x^2)$

y = g(u), u = f(x) $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

CHAIN RULE

 $\frac{dy}{dx} = \frac{\sqrt{dx} - u\frac{dy}{dx}}{\sqrt{2}}$

 $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$ $f(x) = e^x \Rightarrow f'(x) = e^x$

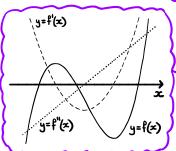
 $f(x) = \ln x \implies f'(x) = \frac{1}{x}$ $f(x) = \sin x \implies f'(x) = \cos x$

 $f(x) = \cos x \Rightarrow f'(x) = -\sin x$

KINEMATICS

QUOTIENT RULE

e.g. $y = \frac{\sin x}{x^2}$ $\frac{dy}{dx} = \frac{x^2 \cdot \cos x - 2x \cdot \sin x}{x^4}$



RELATIONSHIP
BETWEEN
GRAPHS

f(x)

f'(x)

f'(x)

f'(x)=0

OPTIMISATION

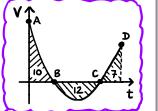
FURTHER DIFFERENTIATION

FURTHER INTEGRATION dt S= DISPLACEMENTS Jat

v= VELOCITY

dt

a= ACCELERATION Jat



 $\int \frac{\sin x}{\cos x} dx$ $= -|n|\cos x|+c$ $\int 2x(x^2+1)^4 dx$ $= \frac{1}{5}(x^2+1)^5+c$

OF THE Jg'(z)f(g(z))dz

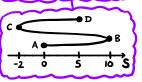
 $\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$ $\int e^{x} dx = e^{x} + c$ $\int \frac{1}{x} dx = |n|x| + c$ $\int \sin x dx = -\cos x + c$ $\int \cos x dx = \sin x + c$

FIND

DISPLACEMENT FROM A TO D = $\int V dt = 10 - 12 + 7 = 5m$ DIST. TRAVELLED = $\int |V| dt = 10 + 12 + 7 = 29m$ FROM A TO D

ENCLOSED BETWEEN

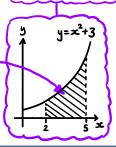
TWO CURVES



REVERSE CHAIN RULE

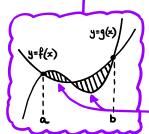
REPLACE $x \rightarrow ax+b$

eg $\int e^{3x+2} dx = \frac{1}{3}e^{3x+2} + c$ $\int cos(2x-1) dx = \frac{1}{2}sin(2x-1) + c$ SHADED AREA = $\int_{2}^{5} x^{2} + 3 dx$ = $\left[\frac{1}{3}x^{3} + 3x\right]_{2}^{5}$ = $\left(\frac{125}{3} + 15\right) - \left(\frac{8}{3} + 6\right)$ = 48 units²



WITHOUT GDC

 $\int_{a}^{b} g'(x) dx = g(b) - g(a)$



 $AREA = \int_{a}^{b} |f(x) - g(x)| dx$

FIND THE TOTAL AREA ENCLOSED

BETWEEN THE CURVES $f(x) = x^3 - 5x \text{ and } g(x) = x^2$ CURVES INTERSECT WHEN f(x) = g(x)GDC $\Rightarrow x = -1.791, 0, 2.791$ TOTAL $f(x) = \frac{2.791}{AREA} \left| (x^3 - 5x) - (x^2) \right| dx$

AREA = $\int_{-1.791}^{1.791} |(x^2-5x)-(x^2)| dx$ GDC = 15.08 units²